www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Topologie und Geometrie" - Von der Norm zur Metrik
Von der Norm zur Metrik < Topologie+Geometrie < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Topologie und Geometrie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Von der Norm zur Metrik: Wie geht das?
Status: (Frage) beantwortet Status 
Datum: 20:49 Sa 16.07.2005
Autor: grasshead

Hallo zusammen!

Ich bin auf der Suche nach einer Metrik, die sich von der [mm] \parallel [/mm] · [mm] \parallel_{2}-Norm [/mm] ableitet. Da es sich hier um keine Übungsaufgabe handelt und auch wahrscheinlich nicht in der Klausur abgefragt wird, ist der Weg weniger Wichtig. Ich benötige die Metrik um mit ein paar Kommilitonen eine eigene Übungsaufgabe daraus zu basteln, in der wir die Stetigkeit von einer Funktion bezüglich verschiedener Metriken zu überprüfen lernen wollen.

die  [mm] \parallel [/mm] · [mm] \parallel_{2}-Norm [/mm]  haben wir in der Vorlesung mit
[mm] \parallel f\parallel_{2}=\wurzel{\integral_{a}^{b} {f^{2}(x) dx}} [/mm]
definiert.

Schönen Abend noch,
grasshead


Achja:
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Von der Norm zur Metrik: Antwort
Status: (Antwort) fertig Status 
Datum: 21:55 Sa 16.07.2005
Autor: Hanno

Hallo Grasshead!

Sei [mm] $\Vert\cdot\Vert$ [/mm] eine beliebige Norm auf einem unitären oder reellen Vektorraum $V$ (über [mm] $K=\IC\vee\IR$). [/mm] Dann wird durch [mm] $d(x,y)=\Vert x-y\Vert, x,y\in [/mm] V$ eine Metrik [mm] $d:V\times V\to\IR$ [/mm] induziert.

Beweis:
- Für alle [mm] $x,y\in [/mm] V$ gilt [mm] $0=d(x,y)\gdw \Vert x-y\Vert=0\gdw x-y=0\gdw [/mm] x=y$.
- Für alle [mm] $x,y\in [/mm] V$ gilt [mm] $d(x,y)=\Vert x-y\Vert=\vert -1\vert\Vert x-y\Vert [/mm] = [mm] \Vert y-x\Vert [/mm] = d(y,x)$.
- Für alle [mm] $x,y,z\in [/mm] V$ gilt [mm] $d(x,y)=\Vert x-y\Vert [/mm] = [mm] \Vert x-z+z-y\Vert \leq \Vert x-z\Vert [/mm] + [mm] \Vert z-y\Vert [/mm] = d(x,z)+d(z,y)$.

Damit sind alle drei Bedingungen an eine Metrik erfüllt.

In deinem Falle kannst du also einfach eine Metrik $d$ über [mm] $d(f,g)=\sqrt{\integral_{a}^{b} (f(x)-g(x))^2 dx}$ [/mm] definieren.


Liebe Grüße,
Hanno

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Topologie und Geometrie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de