www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Schul-Analysis" - Vorgegebene Eigenschaften
Vorgegebene Eigenschaften < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Schul-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Vorgegebene Eigenschaften: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:46 Di 29.11.2005
Autor: philipp-100

Hallo,

ich habe :

eine ganzrationale Funktion vom 3 Grad symetrisch zum Koordinatensursprung sie schneidet die x achse an der stelle 1.
ausserdem schließt de Graph im 1 Quadranten eine Fläche von 12 ein
Bestimme den Funktionsterm.

Wie ich vorgegangen bin:

[mm] x^3+ax^2+bx+c [/mm]

da die Funktion symetrisch ist habe ich [mm] ax^2 [/mm] und c einfach weggestrichen.
Und dann komm ich nicht mehr weiter.
Weiss jdm Rat ?


        
Bezug
Vorgegebene Eigenschaften: Hinweise
Status: (Antwort) fertig Status 
Datum: 21:11 Di 29.11.2005
Autor: Loddar

Hallo Philipp!


> Wie ich vorgegangen bin:
> [mm]x^3+ax^2+bx+c[/mm]

[notok] Da fehlt noch ein Koeffizient vor dem [mm] $x^3$ [/mm] :

$f(x) \ = \ [mm] a*x^3 [/mm] + [mm] b*x^2 [/mm] + c*x + d$


Durch die Punktsymmetrie verbleibt dann noch (wie von Dir bereits erkannt):

$f(x) \ = \ [mm] a*x^3 [/mm] + c*x$


Der Schnittpunkt mit der x-Achse bei $x \ = \ 1$ gibt doch eine Nullstelle an:
$f(1) \ = \ 0$


Und durch die Flächenangabe (in Verbindung mit der o.g. Nullstelle) wissen wir:

$A \ = \ [mm] \integral_{0}^{1}{f(x) \ dx} [/mm] \ = \ 12$


Kommst du mit diesen Hinweisen nun etwas weiter?


Gruß
Loddar


Bezug
                
Bezug
Vorgegebene Eigenschaften: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:43 Di 29.11.2005
Autor: philipp-100

Ja danke Loddar,

aber bei mir hackts noch wenn ich a und c bestimme.
Weil auch wenn ich es gleich der Fläche setze kann ich a und c nicht genau bestimmen.

Bezug
                        
Bezug
Vorgegebene Eigenschaften: integrieren
Status: (Antwort) fertig Status 
Datum: 21:47 Di 29.11.2005
Autor: Loddar

Hallo Philipp!


Aber Du kannst doch von der allgemeinen Form $f(x) \ = \ [mm] a*x^3 [/mm] + c*x$ die Stammfunktion $F(x) \ =\ ...$ bilden und die gegebenen Grenzen einsetzen.

Damit hast Du dann automatisch Deine 2. Bestimmungsgleichung.


Gruß
Loddar


Bezug
                                
Bezug
Vorgegebene Eigenschaften: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:54 Di 29.11.2005
Autor: philipp-100

Hab ich auch gemacht.

[mm] 1/4*a*x^4+1/2*c*x^2 [/mm] und dann für x=1 einsetzen und das gleich der Fläche

Bezug
                                        
Bezug
Vorgegebene Eigenschaften: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 22:25 Di 29.11.2005
Autor: philipp-100

ich hab mir das mal gezeichnet,
und dann es sollte für a etwas negatives raus kommen , damit sich eine Fläche im 1 Quadranten bildet.
allerdings klappt dein Lösungsansatz bei mir nicht.
WIe soll ich denn a und c rausbekommen wenn ich beides noch in meiner Gleichung habe ?

Bezug
                                        
Bezug
Vorgegebene Eigenschaften: 2. Gleichung
Status: (Antwort) fertig Status 
Datum: 00:38 Mi 30.11.2005
Autor: leduart

Hallo
du hast jetzt> [mm]1/4*a+1/2*c=12[/mm]
ausserdem hast du doch noch f(1)=0, das gibt die 2. Gleichung für a und c.
Lies die postings genauer, das stand schon in der ersten Antwort!
Gruss leduart

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Schul-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de