www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Folgen und Reihen" - Vorschrift einer Folge
Vorschrift einer Folge < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Vorschrift einer Folge: Auch mit x möglich?
Status: (Frage) beantwortet Status 
Datum: 12:23 Mi 27.01.2010
Autor: Pacapear

Hallo!




Ich habe eine Frage zur Vorschrift von Folgen.

Bisher kenne ich die so: [mm] f:\IN\to\IR [/mm] mit $k [mm] \mapsto a_k$ [/mm] und [mm] a_k [/mm] ist dann z.B. sowas wie [mm] 2^k [/mm] oder so.

Die Folgenvorschrift ist also nur abhängig von k, k ist halt die Varible der Vorschrift.



Aber wenn ich jetzt zum Beispiel eine Reihe habe, dann sind die einzelnen Summanden ja eine Folge.

Z.B. bei der Reihe [mm] \summe_{k=0}^{\infty}\bruch{4}{k} [/mm] , dann ist ja [mm] (a_k) [/mm] mit [mm] a_k=\bruch{4}{k} [/mm] eine Folge.

Aber dann würden die Folgenglieder z.B. bei der geometrischen Reihe [mm] \summe_{k=0}^{\infty}x^k [/mm] ja [mm] a_k=x^k [/mm] sein und [mm] a_k [/mm] wäre plötzlich von zwei Variablen abhängig, nämlich einmal von k und einmal von x.

Wie soll das gehen, dann müsste die Folge ja aus einer Menge [mm] \IN\times\IR [/mm] abbilden, tut sie ja aber nicht [haee]



Oder z.B. steht bei Wikipedia, dass man die Exponentialfuntkion als Grenzwert einer Folge [mm] \limes_{n\rightarrow\infty}(1+\bruch{x}{n})^n [/mm] definieren kann.

Also heißt dass doch, die Folgenmitglieder lauten [mm] a_n=(1+\bruch{x}{n})^n [/mm] und das ist auch wieder abhängig von n und x.

Das versteh ich irgendwie nicht [haee]



Kann mir vielleicht jemand weiterhelfen?

Vielen Dank.

LG Nadine

        
Bezug
Vorschrift einer Folge: Antwort
Status: (Antwort) fertig Status 
Datum: 12:39 Mi 27.01.2010
Autor: leduart

Hallo
1. es gibt Zahlenfolgen und andere Folgen, wie Funktionenfolgen, Folgen von Punkten im [mm] R^n [/mm] und viele andere.
[mm] f_n(x)=(1+x/n)^n [/mm] ist ne Funktionenfolge, für z. bsp x=3 ne Zahlenfolge.
Ebenso die Reihe, die du als geom. Reihe bezeichnet hast ist  keine zahlenreihe und keine Folge sondern eine Summe von Funktionen, wenn du bis n summierst.
Die Koeffizienten einer Zahlen-Reihe kannst du als Zahlen-Folgen hinschreiben.
oft werden auch Reihen als Folgen betrachtete, dann ist aber ein Folgenglied [mm] S_n=\summe_{i=1}^{n}a_i. [/mm]
und die [mm] a_i [/mm] sind nicht die Folgenglieder.
Gruss leduart


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de