www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Numerik" - Vorwärts-Stabil, Beispiel
Vorwärts-Stabil, Beispiel < Numerik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Numerik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Vorwärts-Stabil, Beispiel: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 17:28 Sa 10.10.2015
Autor: sissile

Aufgabe
Ein Beispiel zur Vorwärts-Stabilität:
Es sei [mm] f(x):=\sqrt{x+1} [/mm] - [mm] \sqrt{x}, x\ge [/mm] 0
f'(x)= [mm] \frac{1}{2 \sqrt{x+1}}-\frac{1}{2 \sqrt{x}} [/mm] = - [mm] \frac{\sqrt{x+1} -\sqrt{x}}{2 \sqrt{x+1} \sqrt{x}} [/mm]
(1) [mm] K_{rel}:= [/mm] | f'(x) * [mm] \frac{x}{f(x)}|= \frac{1}{2} \frac{\sqrt{x}}{\sqrt{x+1}}<\frac{1}{2} [/mm]
Die Funktion ist gut konditioniert und sollte sich daher genau auswerten lassen.
Es sei nun x [mm] \in [/mm] R und [mm] \overline{f} [/mm] (x) sei der folgene Algorithmus:
[mm] z_1= \Box(x+1) [/mm]
[mm] z_2= \Box\sqrt{z_1} [/mm]
[mm] z_3= \Box \sqrt{x} [/mm]
[mm] z_4= \Box(z_2 [/mm]  - [mm] z_3) [/mm]
[mm] \overline{f}= z_4 [/mm]

Dann gilt:
[mm] z_1= [/mm] (x+1) (1+ [mm] \epsilon_1) [/mm]
(2) [mm] z_2 [/mm] = [mm] \sqrt{z_2} (1+\epsilon_2)= \sqrt{(x+1)(1+\epsilon_1)}(1+ \epsilon_2) \approx \sqrt{(x+1)}(1+\frac{1}{2}\epsilon_1 [/mm] + [mm] \epsilon_2) [/mm]
[mm] z_3= [/mm] sqrt(x) [mm] (1+\epsilon_3) [/mm]
(2) [mm] z_4= (z_2-z_3)*(1+\epsilon_4) [/mm] = [mm] (\sqrt{x+1}-\sqrt{x}+\sqrt{x+1}(1/2 \epsilon_1 [/mm] + [mm] \epsilon_2) [/mm] - [mm] \epsilon_3 \sqrt{x}) [/mm] (1 + [mm] \epsilon_4) \approx \sqrt{x+1} [/mm] - [mm] \sqrt{x} [/mm] + [mm] \sqrt{x+1} (\frac{1}{2}\epsilon_1 [/mm] + [mm] \epsilon_2 [/mm] + [mm] \epsilon_4) [/mm] - [mm] \sqrt{x} (\epsilon_3 [/mm] + [mm] \epsilon_4)= \overline{f}(x) [/mm]

(3) Die Fehlerterme [mm] \epsilon_i [/mm] können negativ sein. Der absolute Gesamtfehler ist durch:
[mm] \frac{3}{2} \sqrt{x+1} [/mm] eps + [mm] \sqrt{x} [/mm] eps + [mm] (\sqrt{x+1} -\sqrt{x}) [/mm] eps
bestmöglich abgeschätzt. Also gilt:
[mm] |\frac{\overline{f}(x)-f(x)}{f(x)}| \le (\underbrace{\frac{3/2 \sqrt{x+1}+\sqrt{x}}{\sqrt{x+1}-\sqrt{x}}}_{\approx 5x \mbox{für} x\rightarrow \infty} [/mm] +1) eps
Der Algorithmus [mm] \overline{f} [/mm] ist  nicht vorwärts stabil.



Hallo,
[]http://uni.walljumper.de/Sonstiges/nula_ss09_skript_kap_8_090710.pdf
S.16/17

Unsere Bezeichnungen:
eps ist die Maschienengenauigkeit
[mm] \Box(x)... [/mm] Rundung von x zur nächstgelegenen Maschinenzahl
[mm] \Box(x)=x(1+\epsilon) [/mm] mit [mm] |\epsilon| \le [/mm] eps

Frage 1:
Wie kommt man auf die schöne Form von [mm] K_{rel} [/mm] ??
Ich erhalte
[mm] K_{rel}:= [/mm] | f'(x) * [mm] \frac{x}{f(x)}| [/mm] = |- [mm] \frac{x(\sqrt{x+1}-\sqrt{x})}{(2 \sqrt{x+1}\sqrt{x})*(\sqrt{x+1}-\sqrt{x})}|= \frac{1}{2}| [/mm] - [mm] \frac{x \sqrt{x+1} - x \sqrt{x}}{x \sqrt{x} +\sqrt{x} - x \sqrt{x+1}}| [/mm]

Frage 2:
Wie wird in [mm] z_2 [/mm] und [mm] z_4 [/mm] jeweils approximiert?
Ich verstehe nicht wie man auf  [mm] \sqrt{(x+1)(1+\epsilon_1)}(1+ \epsilon_2) \approx \sqrt{(x+1)}(1+\frac{1}{2}\epsilon_1 [/mm] + [mm] \epsilon_2) [/mm] kommt.

Frage 3:
Wie kommt man nun auf diesen Gesamtfehler? Ab da an verstehe ich das gar nicht mehr ;((


Ich würde mich sehr freuen, wenn mir das Beispiel wer erklären könnte! Würde das gerne verstehen!

LG,
sissi

        
Bezug
Vorwärts-Stabil, Beispiel: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:20 Mo 12.10.2015
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
        
Bezug
Vorwärts-Stabil, Beispiel: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 15:56 Di 13.10.2015
Autor: HJKweseleit


> Ein Beispiel zur Vorwärts-Stabilität:
>  Es sei [mm]f(x):=\sqrt{x+1}[/mm] - [mm]\sqrt{x}, x\ge[/mm] 0
>  f'(x)= [mm]\frac{1}{2 \sqrt{x+1}}-\frac{1}{2 \sqrt{x}}[/mm] = -
> [mm]\frac{\sqrt{x+1} -\sqrt{x}}{2 \sqrt{x+1} \sqrt{x}}[/mm]
>  (1)
> [mm]K_{rel}:=[/mm] | f'(x) * [mm]\frac{x}{f(x)}|= \frac{1}{2} \frac{\sqrt{x}}{\sqrt{x+1}}<\frac{1}{2}[/mm]
>  
> Die Funktion ist gut konditioniert und sollte sich daher
> genau auswerten lassen.
>  Es sei nun x [mm]\in[/mm] R und [mm]\overline{f}[/mm] (x) sei der folgene
> Algorithmus:
>  [mm]z_1= \Box(x+1)[/mm]
>  [mm]z_2= \Box\sqrt{z_1}[/mm]
>  [mm]z_3= \Box \sqrt{x}[/mm]
>  
> [mm]z_4= \Box(z_2[/mm]  - [mm]z_3)[/mm]
>  [mm]\overline{f}= z_4[/mm]
>  
> Dann gilt:
>  [mm]z_1=[/mm] (x+1) (1+ [mm]\epsilon_1)[/mm]
>  (2) [mm]z_2[/mm] = [mm]\sqrt{z_2} (1+\epsilon_2)= \sqrt{(x+1)(1+\epsilon_1)}(1+ \epsilon_2) \approx \sqrt{(x+1)}(1+\frac{1}{2}\epsilon_1[/mm]
> + [mm]\epsilon_2)[/mm]
>  [mm]z_3=[/mm] sqrt(x) [mm](1+\epsilon_3)[/mm]
>  (2) [mm]z_4= (z_2-z_3)*(1+\epsilon_4)[/mm] =
> [mm](\sqrt{x+1}-\sqrt{x}+\sqrt{x+1}(1/2 \epsilon_1[/mm] +
> [mm]\epsilon_2)[/mm] - [mm]\epsilon_3 \sqrt{x})[/mm] (1 + [mm]\epsilon_4) \approx \sqrt{x+1}[/mm]
> - [mm]\sqrt{x}[/mm] + [mm]\sqrt{x+1} (\frac{1}{2}\epsilon_1[/mm] + [mm]\epsilon_2[/mm]
> + [mm]\epsilon_4)[/mm] - [mm]\sqrt{x} (\epsilon_3[/mm] + [mm]\epsilon_4)= \overline{f}(x)[/mm]
>  
> (3) Die Fehlerterme [mm]\epsilon_i[/mm] können negativ sein. Der
> absolute Gesamtfehler ist durch:
>   [mm]\frac{3}{2} \sqrt{x+1}[/mm] eps + [mm]\sqrt{x}[/mm] eps + [mm](\sqrt{x+1} -\sqrt{x})[/mm]
> eps
>  bestmöglich abgeschätzt. Also gilt:
>  [mm]|\frac{\overline{f}(x)-f(x)}{f(x)}| \le (\underbrace{\frac{3/2 \sqrt{x+1}+\sqrt{x}}{\sqrt{x+1}-\sqrt{x}}}_{\approx 5x \mbox{für} x\rightarrow \infty}[/mm]
> +1) eps
>  Der Algorithmus [mm]\overline{f}[/mm] ist  nicht vorwärts stabil.
>  
>
> Hallo,
>  
> []http://uni.walljumper.de/Sonstiges/nula_ss09_skript_kap_8_090710.pdf
>  
> S.16/17
>  
> Unsere Bezeichnungen:
>  eps ist die Maschienengenauigkeit
>  [mm]\Box(x)...[/mm] Rundung von x zur nächstgelegenen
> Maschinenzahl
>  [mm]\Box(x)=x(1+\epsilon)[/mm] mit [mm]|\epsilon| \le[/mm] eps
>  
> Frage 1:
>  Wie kommt man auf die schöne Form von [mm]K_{rel}[/mm] ??
>  Ich erhalte
>   [mm]K_{rel}:=[/mm] | f'(x) * [mm]\frac{x}{f(x)}|[/mm] = |-
> [mm]\frac{x(\sqrt{x+1}-\sqrt{x})}{(2 \sqrt{x+1}\sqrt{x})*(\sqrt{x+1}-\sqrt{x})}|= \frac{1}{2}|[/mm]
> - [mm]\frac{x \sqrt{x+1} - x \sqrt{x}}{x \sqrt{x} +\sqrt{x} - x \sqrt{x+1}}|[/mm]
>  



Du darfst Zähler und Nenner nicht ausrechnen, sondern musst vorher kürzen:

[mm] |-\frac{x(\sqrt{x+1}-\sqrt{x})}{(2 \sqrt{x+1}\sqrt{x})*(\sqrt{x+1}-\sqrt{x})}| [/mm] nun die beiden hinteren Klammern gegeneinander wegkürzen!  = [mm] |-\frac{x}{(2 \sqrt{x+1}\sqrt{x})}| [/mm]




> Frage 2:
>  Wie wird in [mm]z_2[/mm] und [mm]z_4[/mm] jeweils approximiert?
>  Ich verstehe nicht wie man auf  
> [mm]\sqrt{(x+1)(1+\epsilon_1)}(1+ \epsilon_2) \approx \sqrt{(x+1)}(1+\frac{1}{2}\epsilon_1[/mm]
> + [mm]\epsilon_2)[/mm] kommt.





[mm] \sqrt{(1+\epsilon_1)}(1+ \epsilon_2) \approx [/mm] (1+0,5 [mm] \epsilon_1-Term [/mm] mit [mm] \epsilon_1^2 [/mm] usw.)*(1+ [mm] \epsilon_2)\approx 1+0,5\epsilon_1 [/mm] -Term mit [mm] \epsilon_1^2 [/mm] usw. + [mm] \epsilon_2 [/mm] + 0,5 [mm] \epsilon_1*\epsilon_2 [/mm] - ...), wobei Produkte aus Epsilons fast keine Rolle gegen epsilons spielen, da ihr Wert viel kleiner ist, verbleibt somit   [mm] \approx 1+0,5\epsilon_1 [/mm] + [mm] \epsilon_2 [/mm]



>  
> Frage 3:
>  Wie kommt man nun auf diesen Gesamtfehler? Ab da an
> verstehe ich das gar nicht mehr ;((
>  
>



Das bezieht sich offenbar auf
[mm] z_4 [/mm] = [mm] (\sqrt{x+1}-\sqrt{x}+\sqrt{x+1}(1/2 \epsilon_1+\epsilon_2)- \epsilon_3 \sqrt{x})(1 [/mm] + [mm] \epsilon_4)= (\sqrt{x+1}-\sqrt{x}+\sqrt{x+1}(1/2 \epsilon_1+\epsilon_2)- \epsilon_3 \sqrt{x})+(\sqrt{x+1}*\epsilon_4-\sqrt{x}*\epsilon_4+\sqrt{x+1}(1/2 \epsilon_1+\epsilon_2)*\epsilon_4- \epsilon_3 \sqrt{x}*\epsilon_4) [/mm]

[mm] \sqrt{x+1}-\sqrt{x} [/mm] ist fehlerfrei
[mm] \sqrt{x+1}(1/2 \epsilon_1+\epsilon_2) [/mm] hat maximal Fehler [mm] \sqrt{x+1}(1/2 [/mm] eps+eps)
[mm] \epsilon_3 \sqrt{x} [/mm] hat maximal Fehler [mm] eps*\sqrt{x} [/mm]
[mm] (\sqrt{x+1}-\sqrt{x})*\epsilon_4 [/mm] hat maximal Fehler [mm] (\sqrt{x+1}-\sqrt{x})*eps [/mm]

[mm] \sqrt{x+1}(1/2 \epsilon_1+\epsilon_2)*\epsilon_4 [/mm] und [mm] \epsilon_3 \sqrt{x}*\epsilon_4) [/mm] enthalten beide mindestens zweimal einen [mm] \epsilon-Faktor [/mm] und sind zu vernachlässigen.

Bleibt somit  [mm] \sqrt{x+1}(3/2 [/mm] eps)+ [mm] eps*\sqrt{x}+(\sqrt{x+1}-\sqrt{x})*eps [/mm]









> Ich würde mich sehr freuen, wenn mir das Beispiel wer
> erklären könnte! Würde das gerne verstehen!
>  
> LG,
>  sissi


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Numerik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de