www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Wahrscheinlichkeitsrechnung" - WSK Würfelwurf
WSK Würfelwurf < Wahrscheinlichkeit < Stochastik < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Wahrscheinlichkeitsrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

WSK Würfelwurf: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:31 Di 28.11.2006
Autor: Lueger

Aufgabe
idealer Tetraeder, ist auf seinen Seiten mit 1 -4 beschriftet
(also ein Würfel von 1 bis 4)
es wird 5 mal geworfen
Wsk, dass eine Zahl entsteht, die genau drei vieren und zwei dreien enthält.??

Hallo,
Bei 5 Würfen gibt es 1024 verschiedene Kombinationen.
Ich habe keine Ahnung wie ich auf die Anzahl der Zahlenkombinationen mit 2x3 und 3x4 komme??? Könnte die nur Abzählen :-)

Hat jemand einen Tipp?



        
Bezug
WSK Würfelwurf: Tipp
Status: (Antwort) fertig Status 
Datum: 19:45 Di 28.11.2006
Autor: J.W.5

Hey,

also du würfelst 5 mal. Dann hast du bei jedem Wurf die Möglichkeit, die Zahlen von 1-4 zu würfeln. Am besten fertigst du dir ein Baumdiagramm an. Dann kannst du die Pfadrege verwenden und bekommst ganz leicht die Wahrscheinlichkeit raus, für versch. Kominationen.
Die 1024 bekommst du raus, in dem du überlegst, wieviele Möglichkeiten du bei jedem Wurf hast. Dann kommst du zu dem Ergebnis: vier Zahlen bei jeden der fünf Würfe. Also heiß das, du musst [mm] 4^{5} [/mm] rechnen.
Ich hoffe du hast es verstanden, so wie ich mich ausgedrückt habe. *grins*

Bezug
                
Bezug
WSK Würfelwurf: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:54 Di 28.11.2006
Autor: Lueger

Ja das ist klar ...

die Möglichkeiten hat ich ja ausgerechnet und die Warscheinlichkeit eines Pfades ist auch kein Problem [mm] (1/4)^5 [/mm]
Die Frage ist wieviele Pfade es gibt mit der obigen Aufgabenstellung

Bezug
                        
Bezug
WSK Würfelwurf: Antwort
Status: (Antwort) fertig Status 
Datum: 20:16 Di 28.11.2006
Autor: Walde

Hi Lueger,

du musst dir Überlegen, wieviele Möglichkeiten gibt es 2 "Objekte" (die beiden Dreien) auf 5 Plätze zu verteilen?

5*4

5 Für die erste und noch 4 für die zweite.

Da es dabei aber nicht auf die Reihenfolge der Dreien ankommt (man kann die Dreien, d.h. die Würfel nicht unterscheiden,d.h. man kann nicht zwischen erster und zweiter Drei unterscheiden), musst du noch durch 2! teilen. Das ist die Anzahl, mit der man 2 Objekte auf 2 Plätze verteilen könnte (Stichwort:Permutationen), wenn sie unterscheidbar wären.

Also [mm] \bruch{5*4}{2!} [/mm]

Das musst du jetzt noch mit der Anzahl der Möglichkeiten multiplizieren, wie man 3 "Objekte" (die Vieren) auf 3 Plätze verteilen kann.

3! 3 für die erste Vier mal 2 für die zweite

da aber auch die Vieren nicht unterscheidbar sind (du kannst nicht zwischen erster Vier und zweiter Vier unterscheiden.), musst du diese Zahl noch durch die Anzahl der Möglchkeiten teilen die man hätte, 3 unterscheidbare Objekte auf 3 Plätze zu verteilen. Das wären (natürlich)auch 3!

Also [mm] \bruch{3!}{3!}=1 [/mm]

Insgesamt also [mm] \bruch{5*4}{2!}*1=\vektor{5 \\ 2} [/mm] Möglichkeiten.

Siehe hierzu auch den []Wikipedia-Eintrag

Alles klar ? ;-)

l G walde


Bezug
                                
Bezug
WSK Würfelwurf: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 20:52 Di 28.11.2006
Autor: Lueger

Hallo walde...

danke für deine ausführliche Erklärung.
Wahrscheinlichkeitsrechnung gehört (noch) nicht zu meinen Lieblingsgebieten :-)

Grüße

Lueger

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Wahrscheinlichkeitsrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de