www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Stochastik" - W'keit beim Kartenaufdecken
W'keit beim Kartenaufdecken < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

W'keit beim Kartenaufdecken: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:34 Do 17.01.2013
Autor: ratefuchs

Aufgabe
Gegeben ist ein gut gemischtes, durchnummeriertes Kartendeck mit n Karten.
Nun werden die einzelnen Karten verdeckt nacheinander auf den Tisch gelegt.
Danach wird Karte für Karte aufgedeckt.
Wie hoch ist die Wahrscheinlichkeit p, dass die i-te aufgedeckte Karte kleiner ist als ihr Nachfolger? Begründe die Antwort.

Ich habe leider keine Ahnung wie ich hier vorgehen soll, deshalb habe ich einfach mal etwas rumprobiert.

Die Zufallsvariable X sei die Nummer der momentan aufgedeckten Karte.
Ich glaube nun, je höher der Wert von X ist, desto höher die Chance, dass die nächste Karte einen niedrigeren Wert hat.
Also würde ich sagen, dass die Wahrscheinlichkeit Abhängig von den Karten ist, die bereits gezogen wurde.

Leider ist die Antwort p = 1/2 :)
Mein Frage ist nun: Warum?!


Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt

        
Bezug
W'keit beim Kartenaufdecken: Antwort
Status: (Antwort) fertig Status 
Datum: 15:55 Do 17.01.2013
Autor: Sax

Hi,


> Die Zufallsvariable X sei die Nummer der momentan
> aufgedeckten Karte.
>  Ich glaube nun, je höher der Wert von X ist, desto höher
> die Chance, dass die nächste Karte einen niedrigeren Wert
> hat.
>  Also würde ich sagen, dass die Wahrscheinlichkeit
> Abhängig von den Karten ist, die bereits gezogen wurde.
>  

Nach dieser bedingten Wahrscheinlichkeit ist aber überhaupt nicht gefragt.

Mache dir zunächst klar, dass es auf die Nummer i in der Aufgabenstellung gar nicht ankommt. Es genügt also, das Problem für den Fall i=1 zu betrachten, z.B. mit einem Baumdiagramm. Wenn du dich ein wenig mit Summenformeln auskennst, wirst du die Lösung leicht finden.

Gruß Sax.

Bezug
                
Bezug
W'keit beim Kartenaufdecken: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:20 Do 17.01.2013
Autor: ratefuchs

Okay, für i = 1 verstehe ich warum p=1/2 sein muss.
Denn für den Grundraum gilt:

[mm] \Omega [/mm] = [mm] \{ (x_1, x_2) | x_1, x_2 \in \IN: x_1 < n \wedge x_2 < n\} [/mm]

Die Menge an Eregnisen die Interessiert ist also:
[mm] \mathcal{A} [/mm] = [mm] \{ (x_1, x_2) \in \Omega | x_1 < x_2\} [/mm]

Das Komplement dieser Menge ist:
[mm] \mathcal{A}^c [/mm] = [mm] \{ (x_1, x_2) \in \Omega | x_2 < x_1\} [/mm]

Es gilt [mm] \mathcal{A} \cup \mathcal{A}^c [/mm] = [mm] \Omega [/mm] und [mm] |\mathcal{A}| [/mm] = [mm] |\mathcal{A}^c| [/mm]
Edit: Und [mm] \mathcal{A} \cap \mathcal{A}^c [/mm] = [mm] \emptyset [/mm]

=> [mm] \IP(\mathcal{A}) [/mm] = 1/2.

Für die ersten beiden Karten die man aufdeckt ist mir das also halbwegs klar.

Für den Moment, in dem man die 3. Karte aufdeckt und somit die 2. Karte mit der 3. Karte vergleicht, ist mir das nichtmehr klar, da sich durch das "entnehmen" der Karten die Wahrscheinlichkeit, welche Nummer die 3. Karte hat verändert.

Kurz gesagt: Ich verstehe nicht, warum es hier nicht um bedingte Wahrscheinlichkeiten geht.

Bezug
                        
Bezug
W'keit beim Kartenaufdecken: Antwort
Status: (Antwort) fertig Status 
Datum: 17:57 Do 17.01.2013
Autor: Sax

Hi,

wäre das Mischen etwas anders abgelaufen, oder hätte vor dem Aufdecken noch jemand abgehoben, wären die Karten, die du jetzt als zweite und dritte untersuchst, die erste und zweite im Stapel.

Gruß Sax.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de