www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Mathe Klassen 8-10" - Wachstum und Zerfall
Wachstum und Zerfall < Klassen 8-10 < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Mathe Klassen 8-10"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Wachstum und Zerfall: Aufgabe 2
Status: (Frage) beantwortet Status 
Datum: 13:06 Di 22.02.2005
Autor: MHaupt1979

Hallo !

Habe eine weitere Aufgabe, die mir Schwierigkeiten bereitet:

Auf dem Gebiet der alten BRD lebten

1830 15,8
1849 18
1880 22,8
1900 29,8
1925 39,0
1950 50,17
1970 60,65

Millionen Einwohner.

a) Begründe, dass (in Annäherung) exponentielles, aber kein lineares Wachstum vorliegt.

b) In welchen Zeitabständen verdoppelte sich die Bevölkerung ?

c) Bestimme die Wachstumsfunktion für die folgenden Fälle: t=0 entspricht
    1) 1830  2) 1900 (jeweils mit der Zahl bei der nächsten Zählung). Welche Einwohnerzahl ist nach beiden Annahmen im Jahr 2004 zu erwarten ?

Lösungsansätze:

zu a) Es handelt sich um exponentielles Wachstum, da sich der aktuelle Bestand in den angegebenen Zeiträumen um ca. das 1,2fache vervielfacht.

zu b) und c) habe ich leider keinen blassen Schimmer. Bei b) muss ich sicher eine Funktion erstellen und diese nach dem Exponenten auflösen. Aber wie lautet die Funktion ? Und bei c) habe ich gar keine Vorstellung. Sorry.

Ich habe diese Aufgabe in keinem anderen Forum gepostet. Danke für Eure Hilfe !

        
Bezug
Wachstum und Zerfall: Antwort
Status: (Antwort) fertig Status 
Datum: 13:26 Di 22.02.2005
Autor: oliver.schmidt


> Hallo !
>  
> Habe eine weitere Aufgabe, die mir Schwierigkeiten
> bereitet:
>  
> Auf dem Gebiet der alten BRD lebten
>  
> 1830 15,8
>  1849 18
>  1880 22,8
>  1900 29,8
>  1925 39,0
>  1950 50,17
>  1970 60,65
>  
> Millionen Einwohner.
>  
> a) Begründe, dass (in Annäherung) exponentielles, aber kein
> lineares Wachstum vorliegt.
>  
> b) In welchen Zeitabständen verdoppelte sich die
> Bevölkerung ?
>  
> c) Bestimme die Wachstumsfunktion für die folgenden Fälle:
> t=0 entspricht
> 1) 1830  2) 1900 (jeweils mit der Zahl bei der nächsten
> Zählung). Welche Einwohnerzahl ist nach beiden Annahmen im
> Jahr 2004 zu erwarten ?
>  
> Lösungsansätze:
>  
> zu a) Es handelt sich um exponentielles Wachstum, da sich
> der aktuelle Bestand in den angegebenen Zeiträumen um ca.
> das 1,2fache vervielfacht.
>  
> zu b) und c) habe ich leider keinen blassen Schimmer. Bei
> b) muss ich sicher eine Funktion erstellen und diese nach
> dem Exponenten auflösen. Aber wie lautet die Funktion ? Und
> bei c) habe ich gar keine Vorstellung. Sorry.

>
die Funktion muss doch wie folgt aussehen:

[mm] y=b*a^t [/mm]

wenn du nun einfach das Jahr 1830 als t=0 annimmst
und als y-Wert die damalige Einwohnerzahl ergibt sich:

[mm] 15.8=b*a^0 [/mm]  also b=15,8

für 1849 ergibt sich dann

18=15.8*a^19, weil ja inzwischen 19 Jahr vergangen sind

damit kannst du dann den Wachstumsfaktor ausrechnen

dasselbe machst du dann mit 1900 als t=0

für Zeiten vor 1900 ergeben sich dann halt für t negative Werte !

zu b)

schau doch mal von: Verdopplung von 1830 - 1900
und 1900-1970 , also jeweils ca. 70 Jahre

kleiner Hinweis: für die Verdopplungszeit gibt es eine Näherungsformel: [mm] n*p\approx [/mm] 70 mit p: Wachstumsfaktor, n Zeit in Jahren

> Ich habe diese Aufgabe in keinem anderen Forum gepostet.
> Danke für Eure Hilfe !
>  

Bitte, gern geschehen ;-)

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Mathe Klassen 8-10"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de