www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Exp- und Log-Funktionen" - Wachstumsfunktion
Wachstumsfunktion < Exp- und Log-Fktn < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Exp- und Log-Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Wachstumsfunktion: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:35 Mi 11.03.2009
Autor: Parkan

Aufgabe
Beschreiben Sie eine Wachstumsfunktion (beliebig selbst wählen).
Bedingungen:
1. Mindestens 2 Nullstellen
2. Die dritte Ableitung muss exestieren
3. Die Funktion muss von einer anderen Funktion abhängen. (also F(g(x))
4. Sie muss mindestens ein Maximum haben und eine maximale änderung haben.

Hallo

Kann ich hier einfach 2 beliebige Funktionen fx und gx mit einander multiplizieren und darauf achten das es die dritte Ableitung gibt?

Z.b fx= [mm] x^2 [/mm] +x +4
gx= 4x+3

Dann fx*gx und fertig ?


        
Bezug
Wachstumsfunktion: Antwort
Status: (Antwort) fertig Status 
Datum: 20:57 Mi 11.03.2009
Autor: leduart

Hallo
deine Schreibweise "fx*gx" ist eigenartig.
Du kannst im Prinzip irgendwas nehmen, aber se soll ja wachsen, also eine Wachstumsfkt sein. wie sie dann allerdings 2 Nullstellen haben soll versteh ich nicht, auch nicht, wie eine Wachstumsfkt ein Max haben soll versteh ich auch nicht.
Wie habt ihr denn Wachstumsfkt definiert?
Ist die Aufgabe woertlich.
Da eine einfache fkt ja f(x)=x ist, kannst du jede Funktion g(x) als g(f(x)) nennen.
2Nullstellen: (x-a)*(x-b)  die hat auch gleich ein Max.
jetzt muss noch f' ein Maximum haben. das hast du noch nicht. also musst du noch ein bissel ueberlegen.

Gruss leduart


Bezug
        
Bezug
Wachstumsfunktion: Antwort
Status: (Antwort) fertig Status 
Datum: 21:04 Mi 11.03.2009
Autor: Vuffi-Raa

Ja, das mit der Wachstumsfunktion ist sehr merkwürdig.

Wenn ich mir nur die Bedingungen an sich angucke, dann dürfte ein Polynom dritten Grades das einfachste sein um diese zu erfüllen. Und dann wie Leduart schon sagte einfach [mm]f(x) = x[/mm] als Verkettung.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Exp- und Log-Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de