www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Exp- und Log-Funktionen" - Wachstumsgesetz
Wachstumsgesetz < Exp- und Log-Fktn < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Exp- und Log-Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Wachstumsgesetz: Überprüfung
Status: (Frage) beantwortet Status 
Datum: 18:54 Sa 21.03.2009
Autor: athi

Aufgabe
In einer Stadt mit 40 000 Einwohnern breitet sich ein Gerücht exponentiell folgendermaßen aus: zum Zeitpunkt t0 ist das Gerücht 100 Personen bekannt und nach drei Tagen kennen schon 2000 Leute die große Neuigkeit.

Berechne das Wachstumsgesetz!


ich erhalte:

Nx = 100 * [mm] e^{0,999*x} [/mm]
     = 100 * [mm] 2,714^x [/mm]


stimmt mein Ergebnis?????


danke.

        
Bezug
Wachstumsgesetz: Antwort
Status: (Antwort) fertig Status 
Datum: 19:06 Sa 21.03.2009
Autor: Schachschorsch56

Du hast die Anzahl bei [mm] t_0=100 [/mm] und Du hast die Anzahl bei [mm] x=t_3=2000, [/mm] dann müsste Deine Formel doch eigentlich lauten:

[mm] M(x)=100*e^{k*x} [/mm] und nach 3 Tagen heißt die Gleichung: [mm] 2000=100*e^{k*3} [/mm] jetzt musst Du nur noch den Wachstumsfaktor k berechnen (M=Anzahl der Wissenden)

Schorsch

Bezug
                
Bezug
Wachstumsgesetz: k von e
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 19:16 Sa 21.03.2009
Autor: athi

für k erhalte ich 0,999


die allg. Formel lautet: Nx = N0 * [mm] e^k*x [/mm]    und    Nx = [mm] a^x [/mm]


schreibe ich dann die Lösung dann so an:
Nx = 100 * [mm] e^0,9999*x [/mm]    und     Nx= 100 * [mm] 2,714^x [/mm]

Bezug
                        
Bezug
Wachstumsgesetz: Tipp
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 20:43 Sa 21.03.2009
Autor: Schachschorsch56

Es gibt tatsächlich 2 Formelarten. Beides sind Exponentialfunktionen...

Die eine hatte ich ja schon in einer meiner Antworten genannt: [mm] f(x)=a*b^x [/mm]
a=Anfangsmenge bei [mm] t_0, [/mm] b=Wachstumskoeffizient(Basis), x=Exponent der Zeit

[mm] f(x)=100*\wurzel[3]{20}^x [/mm]

zur Probe kannst Du ja mal x=3 und x=6 nehmen und mit dem Taschenrechner ausrechnen !

Die zweite Formel ist eine allgemeinere:

[mm] m(t))m_0*e^{-k*t} [/mm]

[mm] m_0=die [/mm] Anfangsmasse, m(t)=Masse zum Zeitpunkt t, -k=Zerfalls- bzw. Wachstumsfaktor, t=Zeit (in diesem Fall in Tagen)

Die Formel für diesen Fall müsste dann so lauten:

[mm] m(t)=100*e^{\bruch{ln(20)}{3}*t} [/mm]

wenn man t=3 einsetzt, kommt heraus:

[mm] m(3)=100*e^{ln(20)}=100*20=2.000 [/mm] !!!

Für t=6 kommt dann heraus:

[mm] m(6)=100*e^{2*ln(20)}=100*400=40.000 [/mm] also die ganze Stadt !!!

Der [mm] e^{2*ln(20)} [/mm] ist gleich [mm] 20^2 [/mm]

Hoffe, es Dir damit gut erklärt zu haben.

Schorsch

Bezug
        
Bezug
Wachstumsgesetz: Antwort
Status: (Antwort) fertig Status 
Datum: 19:24 Sa 21.03.2009
Autor: Schachschorsch56

Hallo Athi, ich glaube, Du lagst richtig...

Die allgemeine Exponentialfunktion lautet ja: [mm] f(x)=a*b^x. [/mm] Du hast f(x), a und x, also heißt die Gleichung: [mm] 2000=100*b^3 [/mm]

Das kannst Du umstellen und erhälst für [mm] b=\wurzel[3]{20}=2.7144... [/mm]

d.h. Die Wachstumsgleichung für x-Tage lautet: [mm] f(x)=100*\wurzel[3]{20}^x [/mm]

hoffe, dass dies jemand bestätigen kann, bin da auch nicht so firm...

Schorsch

Bezug
        
Bezug
Wachstumsgesetz: weitere Antwort
Status: (Antwort) fertig Status 
Datum: 19:42 Sa 21.03.2009
Autor: Schachschorsch56

Habe nochmal nachgeblättert, hatte schonmal eine ähnliche Aufgabe:

Die allgemeine Formel für Wachstum bzw. Zerfall heißt:

[mm] m(x)=m_0*e^{-k*t}, [/mm] Du kannst aber auch Deine Schreibweise nehmen: [mm] N(x)=N_0*e^{k*x} [/mm]

Du hast nach 3 Tagen N(3)=2000 und kannst die Gleichung so schreiben:

[mm] 2000=100*e^{k*3} [/mm] wenn Du diese Gleichung nach k auflösen willst, geht das so:

[mm] 2000=100*e^{3k} [/mm] | :100

[mm] 20=e^{3k} [/mm] | logarithmus naturalis ergibt

ln(20)=3k |:3 ergibt [mm] k=\bruch{ln(20}{3}=0.998577425... [/mm]

Die allgemeine Formel für dieses Wachstum müsste dann lauten:

[mm] N(x)=100*e^{0.9985*x} [/mm]

Was hälst Du davon ?

Kannst ja mal ausrechnen, in wievielen Tagen es die ganze Stadt weiß ! Dann musst Du nach x auflösen.

Schorsch

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Exp- und Log-Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de