www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Wahrscheinlichkeitstheorie" - Wahrscheinlicheit
Wahrscheinlicheit < Wahrscheinlichkeitstheorie < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Wahrscheinlichkeitstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Wahrscheinlicheit: Korrekturfehler?
Status: (Frage) überfällig Status 
Datum: 15:09 Do 13.04.2006
Autor: vega_ffm

Aufgabe
Bei der zufälligen Auswahl eines Exemplars aus der laufenden Produktion von CD-Rohlingen gibt es folgende Ereignisse:
A = Oberfläche gut
B = Zentrierung gut
Aus Erfahrung kennt man: P(A)=0,92 ; P(B)=0,88 ; P(A [mm] \/ [/mm] B) = 0,96
Bestimmen Sie:
a) P(A /\ B)
b) P(A \ B)
c) P( [mm] \overline{A} [/mm] /\  [mm] \overline{B}) [/mm]

Moin. Habe die Klausur eines Kommilitonen durchgeschaut und vermute hier einen Fehler in der Korrektur oder bei der Aufgabenstellung. Dafür suche ich nun eine Bestätigung.

Also zur Lösung der Aufgabe:

a) P(A /\ B) = P(A) + P(B) - P(A U B)=0,84
    oder wahlweise wie mein Kommi es gemacht hat:
    P(A /\ B) = P(A U B) - P( A /\ [mm] \overline{B} [/mm] ) - ( [mm] \overline{A} [/mm] /\ B)=0,84

b) P(A \ B) = P( A /\ [mm] \overline{B} [/mm] ) = P(A U B) - P(B) = 0,08
    oder wahlweise
    P(A \ B) = P( A /\ [mm] \overline{B} [/mm] ) = P(A) - P(A /\ B) = 0,08

c) nach de Morgan: 1 - 0,96 = 0,04

Für a) und c) volle Punktzahl, b) sei jedoch falsch. Das kann ich nicht nachvollziehen. Es sei denn mit P(A \ B) ist eigentlich P(A | B) gemeint, also NICHT "A ohne B", sondern "A unter der Vorraussetzung, dass B schon eingetreten ist." Also P(A | B) = [mm] \bruch{P( A AND B )}{P(B)}. [/mm]

Handelt es sich um einen Korrekturfehler, oder wo liegt der Fehler in der Rechnung? Danke im vorraus!

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Wahrscheinlicheit: Antwort
Status: (Antwort) fertig Status 
Datum: 15:41 Do 13.04.2006
Autor: Walde

hi vega,

also für [mm] P(A\backslash [/mm] B) ist deine (deines Freundes) Lösung [mm] (=P(A)-P(A\cap [/mm] B)) meiner Meinung nach richtig. Mein Tipp: fragt einfach den Korrektor danach. Ne Fragestunde nach Klausuren gibts doch normalerweise immer.

L G walde

Bezug
        
Bezug
Wahrscheinlicheit: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 15:47 Do 13.04.2006
Autor: Zwerglein

Hi, Vega, hi Walde,

möchte hiermit Eure Ansicht bestätigen!

mfG!
Zwerglein

Bezug
        
Bezug
Wahrscheinlicheit: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 15:20 Mo 17.04.2006
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Wahrscheinlichkeitstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de