www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Wahrscheinlichkeitsrechnung" - Wahrscheinlichkeit...
Wahrscheinlichkeit... < Wahrscheinlichkeit < Stochastik < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Wahrscheinlichkeitsrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Wahrscheinlichkeit...: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:34 Mi 14.05.2008
Autor: djathen

Aufgabe
a)Ein Totospieler kreuzt bei jedem der 11 Spiele zufällig einer der 3 Möglichkeiten 0;1;2 an. Bestimmen Sie die Wahrscheinlichkeit dafür, dass er einen Gewinn erzielt,d.h. mind. 9 Richtige hat
b) Der Spieler hat versehentlich nur 10 Zahlen angekreuzt. Berechnen Sie jetzt die Wahrscheinlichkeit gemäß a)

Also ich muss das nach der Verteilung [mm] \vektor{M \\ k} [/mm] * [mm] \pmat{ N & -M \\ n & -k } [/mm] / [mm] \vektor{N \\ n} [/mm] machen.

Weiss aber nicht was bei dieser Aufgabe was sein soll.

Also auf jeden Fall liegt das Model mit zurückliegen vor.

Oder geht dieses ZE (Zufallsexperiment) nicht mit der Verteilung oben und ich muss das mit zurücklegen mit der Binominalverteilung machen?

Kann auch sein das ich das nicht mitgekriegt habe und man muss das nach der Binominalverteilung machen....deswegen frag ich!

Binominal wäre ja P(X=k) = [mm] \vektor{n \\ k} [/mm] * [mm] p^k [/mm] * (1-p)^(n-k) , wobei ich noch nicht weiss wofür p steht, weil wir noch nicht soweit waren!

Mfg DjAthen

        
Bezug
Wahrscheinlichkeit...: binomialverteilt
Status: (Antwort) fertig Status 
Datum: 01:11 Do 15.05.2008
Autor: aram


> a)Ein Totospieler kreuzt bei jedem der 11 Spiele zufällig
> einer der 3 Möglichkeiten 0;1;2 an. Bestimmen Sie die
> Wahrscheinlichkeit dafür, dass er einen Gewinn erzielt,d.h.
> mind. 9 Richtige hat
>  b) Der Spieler hat versehentlich nur 10 Zahlen angekreuzt.
> Berechnen Sie jetzt die Wahrscheinlichkeit gemäß a)

Hallo djAthen!

>  Also ich muss das nach der Verteilung [mm]\vektor{M \\ k}[/mm] *
> [mm]\pmat{ N & -M \\ n & -k }[/mm] / [mm]\vektor{N \\ n}[/mm] machen.
>  
> Weiss aber nicht was bei dieser Aufgabe was sein soll.
>  
> Also auf jeden Fall liegt das Model mit zurückliegen vor.
>  
> Oder geht dieses ZE (Zufallsexperiment) nicht mit der
> Verteilung oben und ich muss das mit zurücklegen mit der
> Binominalverteilung machen?
>  
> Kann auch sein das ich das nicht mitgekriegt habe und man
> muss das nach der Binominalverteilung machen....deswegen
> frag ich!
>  

Das Ganze ist wirklich binomialverteilt, denn es interessiert uns ja nur, ob der Spieler richtig oder falsch getippt hat. Die Wahrscheinlichkeit p für einen richtigen Tipp beträgt hier [mm] \bruch{1}{3} [/mm]

> Binominal wäre ja P(X=k) = [mm]\vektor{n \\ k}[/mm] * [mm]p^k[/mm] *
> (1-p)^(n-k) ,

  die richtige Formel!

> wobei ich noch nicht weiss wofür p steht,
> weil wir noch nicht soweit waren!

  (p steht für Wahrscheinlichkeit)
Da es heißt mind. 9 Richtige, gewinnt der Spieler auch wenn er 10 oder 11 Richtige hat.
Für dich bedeutet das, dass du für das Ganze P(X=9)+P(X=10)+P(X=11) berechnen musst.
n und p sind dir ja bekannt.
Viel Spass beim Rechnen!

zu b) Hier ändert sich nur eine Zahl, also müsstest du auch damit klar kommen.

> Mfg DjAthen

Mfg Aram

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Wahrscheinlichkeitsrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de