www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Wahrscheinlichkeitsrechnung" - Wahrscheinlichkeit
Wahrscheinlichkeit < Wahrscheinlichkeit < Stochastik < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Wahrscheinlichkeitsrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Wahrscheinlichkeit: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:46 Do 23.02.2006
Autor: barlip

HI
Brauche Hilfe um diese Aufgabe zu lösen:
Jemand greift in zwei Tüten mit Gummibärchen.
Aus der einen zieht er 3 Bärchen heraus, in dieser Tüte sind 30% rote Bärchen vorhanden.
Aus einer anderen zieht er 2 Bärchen heraus, diese Tüte ist zu 75% mit
roten Bärchengefüllt.

Wie hoch ist nun die Wahrscheinlich keit, dass genau 1 rotes Bärchen gezogen wird?
Mindestens ein rotes Bärchen gezogen wird ?
Zwei Bärchen gezogen werden?

Ich weiß nicht wie ich diese beiden Wahrscheinlichkeiten zusammenbekomme?
danke



Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Wahrscheinlichkeit: Antwort
Status: (Antwort) fertig Status 
Datum: 21:23 Do 23.02.2006
Autor: Pi3141

Erst einmal willkommen im Matheraum

1. Hier geht es um die Wahrscheinlichkeit, dass genau ein rotes Gummibärchen gezogen wird.
Die Chance, dass aus der ersten Tüte genau ein rotes Bärchen gezogen wird, ist [mm] 0.3^{3}, [/mm] die Chance, dass Chance, dass keines gezogen wird, ist [mm] 0.7^{3}. [/mm]
Bei der zweiten Tüte gilt analog [mm] 0.75^{2} [/mm] dass genau ein rotes gezogen wird und [mm] 0.25^{2}, [/mm] dass alle nicht rot sind. Nun kombinieren die Wahrscheinlichkeiten, da wir ja wissen wollen, wie wahrscheinlich es ist, dass zuerst 1 und danach 0 oder zuerst 0 und danach 1 rotes Gummibärchen gezogen wird. Die Wahrscheinlichkeit dafür ist dann [mm] 0.3^{3}*0.25^{2} [/mm] + [mm] 0.7^{3}*0.25^{2}. [/mm]

2. Hier geht es darum, dass mindestens ein rotes Gummibärchen gezogen wird.
Das rechnest du am Besten damit, dass du die Gegenwahrscheinlichkeit nimmst, also dass keine rotes Bärchen gezogen wird. Dann musst du nur [mm] 0.7^{3} [/mm] (kein rotes in der ersten Tüte) mit [mm] 0.25^{2} [/mm] (kein rot im zweiten) multiplizieren und dann von 1 abziehen.

3. Geht es hier darum, dass mindestens 2 rote oder genau 2 rote gezogen werden?
Wenn hier nach dem genau gesucht wird, musst die Wahrscheinlichkeiten für diese Kombinationen addieren: (0,2), (1,1) und (2,0).
Wenn hier nach mindestens gesucht ist, nimmst du wieder 1-(Chance kein rotes)-(Chance genau ein rotes).
Hoffe ich konnte dir helfen.

Bezug
                
Bezug
Wahrscheinlichkeit: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:43 Fr 24.02.2006
Autor: barlip

Hi
Leider verstehe ich dein Weg nicht.
Wie kommst du auf [mm] 0.3^3 [/mm] wenn ich aus einer Tüte mit mit 30%
roten Bärchen mit 3 Versuchen eins erwischen will.
Ich dachte ich muss dan
0.3 * 0.7 * 0.7 rechnen und das Ganze nochmal * 3
rechnen da es 3 Möglichkeiten gibts nur ein Bärchen zu bekommen.........
Und dann mulipliziere ich dieses Ergebnis mit der Wahrscheinlichkeit, dass
ich aus der anderen Tüte kein rotes Bärchen herausziehen.
also Ergebnis * [mm] 0.25^2 [/mm]  ???????richtig

danke

Bezug
                        
Bezug
Wahrscheinlichkeit: Antwort
Status: (Antwort) fertig Status 
Datum: 10:38 Sa 25.02.2006
Autor: Zwerglein

Hi, barlip,

>  Ich dachte ich muss dann
> 0.3 * 0.7 * 0.7 rechnen und das Ganze nochmal * 3
>  rechnen da es 3 Möglichkeiten gibts nur ein Bärchen zu
> bekommen.........
>  Und dann mulipliziere ich dieses Ergebnis mit der
> Wahrscheinlichkeit, dass
>  ich aus der anderen Tüte kein rotes Bärchen herausziehen.
>  also Ergebnis * [mm]0.25^2[/mm]  ???????richtig

Richtig - und dann natürlich noch umgekehrt: [mm] 0,7^{3}*(2*0,75*0,25) [/mm]
und beide Zahlen werden addiert.

Was mich bei der Aufgabe nur ziemlich stört, ist die Tatsache, dass man von einer Bernoulli-Kette ausgeht! Eine "normale" Bärchentüte enthält aber doch niemals so viele Bärchen, dass sich die Wahrscheinlichkeiten nicht von Zug zu Zug ändern.  Es sei denn, man zieht "mit Zurücklegen" - aber wer tut das schon bei Gummibärchen!

Trotzdem wird's wohl so gemeint sein, wie Du die Aufgabe begonnen hast!

mfG!
Zwerglein

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Wahrscheinlichkeitsrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de