www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Stochastik" - Wahrscheinlichkeit
Wahrscheinlichkeit < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Wahrscheinlichkeit: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:46 Do 14.05.2009
Autor: Elli-Maus

Aufgabe
Ab welcher Personenzahl lohnt es sich 5 Euro gegen 1 Euro zu wetten, dass sich unter diesen zufälligen Peronen zwei mit gleichen Geburtstag befinden? (Grundannahme: keiner hat am 29.2 Geburtstag, alle Geburtstage haben gleiche Wahrscheinlichkeit)

also ich bin nicht wirklich weit gekommen, da ich nicht wirklich hell in stochastik bin....
ich habe mir überlegt bzw. ich denke ich weiß wie ich die Personenzahl berechne wenn mir die Prozentzahl bekannt ist.
ich weiß nun aber nicht wie man die Prozentenzahl ausrechnen muss (ich denke wenn 1 Euro gegen 1 Euro 50% : 50% ist, dann wären denke ich 5 Euro zu 1 Euro 75 % ) stimmen denn die 75 % oder gibt´s da eine Rechnung ?

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt,

Vielen Dank für die Hilfe im Vorraus

        
Bezug
Wahrscheinlichkeit: Antwort
Status: (Antwort) fertig Status 
Datum: 23:17 Do 14.05.2009
Autor: Sigma

Hallo,

schau mal unter Geburtstagsproblem oder -paradoxon.
Da findest du bestimmt die Formel für n Personen.
Deine Rechnung für 1 Euro gegen 1 Euro ist richtig aber deine Schlussfolgerung von 5 gegen 1 Euro ist falsch.
Laut dir gewinne ich zu 75 % 1 Euro und verliere zu 25% 5 Euro. Macht:

$0,75*1-0,25*5=-0,5$ Euro erwarteter Verlust.

gruß sigma10

Bezug
                
Bezug
Wahrscheinlichkeit: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 07:39 Fr 15.05.2009
Autor: Elli-Maus

erst mal danke, und dann die frage...
ich setze ja 5 euro ein mit der aussicht, dass ich nur ein euro gewinnne, deswegen muss ja dann auch die wahrscheinlich dass ich die 5 euro verliere geringer sein und die wahrscheinlichkeit dass ich ein euro gewinne höher. oder verstehe ich das falsch? Gibt es denn eine Formel mit der ich die Prozentzahl genau ausrechnen kann?

Bezug
                        
Bezug
Wahrscheinlichkeit: Antwort
Status: (Antwort) fertig Status 
Datum: 07:51 Fr 15.05.2009
Autor: glie


> erst mal danke, und dann die frage...
>  ich setze ja 5 euro ein mit der aussicht, dass ich nur ein
> euro gewinnne, deswegen muss ja dann auch die
> wahrscheinlich dass ich die 5 euro verliere geringer sein
> und die wahrscheinlichkeit dass ich ein euro gewinne höher.
> oder verstehe ich das falsch? Gibt es denn eine Formel mit
> der ich die Prozentzahl genau ausrechnen kann?


Hallo,

Eine "faire" Wette hast du dann, wenn der erwartete Gewinn/Verlust Null ist.

Nimm doch mal an du gewinnst die Wette, also den 1 Euro, mit einer Wahrscheinlichkeit p, dann verlierst du die Wette, also die 5 Euro, mit einer Wahrscheinlichkeit von 1-p.

Der erwartete Gewinn/Verlust beträgt dann
$+1*p+(-5)*(1-p)=6p-5$

Bedingung für faire Wette: 6p-5=0
Man erhält also [mm] p=\bruch{5}{6} [/mm]

Gruß Glie


Bezug
                                
Bezug
Wahrscheinlichkeit: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 11:58 So 17.05.2009
Autor: stochastikniete

d.h. die Wahrscheinlichkeit ist  ca. 83% und das wird bei einer Personenzahl von 35 erreicht???

lg,
stochastikniete



Bezug
                                        
Bezug
Wahrscheinlichkeit: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 23:02 So 17.05.2009
Autor: Elli-Maus

also ich habe mit dem Taschenrechner Mathematika bei 35 Personen nur 81%, bei 36 Personen habe ich dann 83,2% und erst bei 37 Personen habe ich dann 84%
dabei habe ich die Formel 1- 365!/ [mm] (365-k)!*n^{k} [/mm]

es kann aber sein dass ich mich irgendwie verrechnet habe, welche Formel hast du denn verwendet?



Bezug
                                        
Bezug
Wahrscheinlichkeit: Antwort
Status: (Antwort) fertig Status 
Datum: 23:51 So 17.05.2009
Autor: Sigma

Hallo,

ich würde auch für Elli-Maus Lösung votieren. Also bei 37 Personen lohnt sich die Wette 5:1 Euro.

[mm] P(A)=1-\bruch{365!}{(365-37)*365^{37}}=1-\bruch{\produkt_{i=0}^{37-1}}{365^{37}}=0.848734 [/mm]

gruß sigma10

Bezug
                                                
Bezug
Wahrscheinlichkeit: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 07:06 Mo 18.05.2009
Autor: Elli-Maus

Danke schön für Ihre Hilfe

Bezug
                                
Bezug
Wahrscheinlichkeit: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 07:05 Mo 18.05.2009
Autor: Elli-Maus

Vielen Dank für Ihre Hilfe

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de