www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Stochastik" - Wahrscheinlichkeit
Wahrscheinlichkeit < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Wahrscheinlichkeit: Aufgabe
Status: (Frage) reagiert/warte auf Reaktion Status 
Datum: 17:07 Mo 08.08.2011
Autor: Luigi.07

Aufgabe
Eine Familie fährt mit ihren 11 Jungen und 18 Mädchen in einen einwöchigen Urlaub. Erfahrungsgemäß beträgt das Risiko, dass sich während des Aufenthaltes einer der Jungen verirrt 5% und dass sich ein Mädchen verirrt 2%.

1. Wie hoch ist die Wahrscheinlichkeit, dass sich während des Aufenthaltes weder ein Junge, noch ein Mädchen verirrt? Ergebnis = A

2. Wie groß ist die Wahrscheinlichkeit, dass sich während des Urlaubes höchstens eines der Kinder verirrt? Ergebnis = B

wie gehe ich an diese Aufgabe ran. Wie benutze ich die % in der Aufgabe?
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Wahrscheinlichkeit: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:36 Mo 08.08.2011
Autor: blascowitz

Hallo,

das sind ja beides alleine betrachtet(also das Verschwinden von Mädchen und Jungen getrennt) Binomialverteilungen. Jetzt versuch erstmal rauszubekommen, was die Parameter(also das $n$ und das $p$) der jeweiligen Binomialverteilungen sind(für Mädchen und Jungen einzeln), dann schauen wir weiter.

Viele Grüße
Blasco  

Bezug
                
Bezug
Wahrscheinlichkeit: Idee
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:01 Mo 08.08.2011
Autor: Luigi.07

Es sind 11 Jungen also ist n=11 p= 0,05
Bei 18 Mädchen ist n=18 und p= 0,02
Die Prozente rechne ich in Dezimalzahlen um oder muss ich 5% von 11 = 0,55 und 2% von 18 = 0,36 rechnen


Bezug
                        
Bezug
Wahrscheinlichkeit: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:15 Mo 08.08.2011
Autor: Dath

Ich verstehe nicht ganz, wo das Problem liegt.  Die W-Keit, dass weder Junge, noch Mädchen verloren geht, berechnet sich ja einfach durch Multiplikation. Schließlich steht ja nchts davon in der Aufgabe, dass die Ereignisse "Junge verirrt", "Mädchen verirrt" stochastisch abhängig sind.
I.Ü. finde ich diese Wahrscheinlichkeiten, dass Jungen häufiger als Mädchen verloren gehen gemein.

Bezug
                                
Bezug
Wahrscheinlichkeit: Rückfrage
Status: (Frage) beantwortet Status 
Datum: 18:31 Mo 08.08.2011
Autor: Luigi.07

Also wenn ich Multiplizieren muss. Liegt die Wahrscheinlichkeit, dass sich keiner verirrt dann bei 47% ???
Erklärt sich aus 95% der Jungen veriirt sich nicht und 98% der Mädchen veriirt sich nicht. Ich habe 95*98/11*18 gerechnet. Oder denke ich zu kompliziert???

Bezug
                                        
Bezug
Wahrscheinlichkeit: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:47 Mo 08.08.2011
Autor: Diophant

Hallo,

erstens einmal würde ich dir dringend empfehlen, nicht mit Prozentzahlen, sondern mit Brüchen oder mit Dezimalbrüchen zu rechnen.

Das würde hier so aussehen:

[mm] P(A)=0,95^{11}*0,98^{18}\approx0,395\hat=39,5\% [/mm]

Deine Rechnung ist also noch falsch. Ist dir klar, was ich da gerecnet habe? Falls nein, ich habe genau den Tipp von blascowitz umgesetzt.

PS (@Mods): Vielleicht sollte man die Mitteilungen doch noch in Fragen und Antworten umwandeln?

Gruß, Diophant



Bezug
                                        
Bezug
Wahrscheinlichkeit: Antwort
Status: (Antwort) fertig Status 
Datum: 15:08 Di 09.08.2011
Autor: Dath

siehe weiter unten meine mitteilung.

Bezug
        
Bezug
Wahrscheinlichkeit: Antwort
Status: (Antwort) fertig Status 
Datum: 18:28 Mo 08.08.2011
Autor: Diophant

Hallo,

zu Aufgabenteil A hat dir blascowitz bereits den entscheidenden Tipp gegeben.

Bei der B versuche einmal, das Komplementärereignis zu formulieren. :-)

Gruß, Diophant

Bezug
                
Bezug
Wahrscheinlichkeit: Rückfrage
Status: (Frage) beantwortet Status 
Datum: 09:22 Di 09.08.2011
Autor: Luigi.07

Ein Komplementärereignis ist das Ereignis, dass nicht eintritt, weil ein anderes Ergebnis eingetreten ist. Die Konvention lautet:

Das Komplementärereignis zu A ist  -A ( A mit Strich drauf)

Wir wissen jetzt, das A = 39,5 weil $ [mm] P(A)=0,95^{11}\cdot{}0,98^{18}\approx0,395\hat=39,5\% [/mm] $
Ich kann aber jetzt nicht annehmen, dass -A=60,5 ist.

Und wenn ich $ [mm] P(B)=0,05^{11}\cdot{}0,02^{18}$ [/mm] rechne, bekomme ich ein komisches Ergbnis.
Da ich seit längerem aus dem Thema raus bin, ist es sehr schwer für mich. Lehramt Primarstufe schneidet das Thema nur kurz an. Haben da nur was mit 6 aus 49 und so zu tun gehabt.


Bezug
                        
Bezug
Wahrscheinlichkeit: Antwort
Status: (Antwort) fertig Status 
Datum: 09:31 Di 09.08.2011
Autor: Dath

Das Gleichheitszeichen kannst du sowieso vergessen. Eine Menge von Ereignissen ist eine Menge und nicht ein Zahl. Und Wahrscheinlichkeit auch nicht. Und meine Frage: Warum kannst du das, nicht nur annehmen, sondern auch zeigen? Es gibt die sog. Kolmogorovschen Axiome (sicher wieder 10mal im Namen verschrieben...), die u.a. sagen, dass die Wahrescheinlichkeit, dass entweder ein Ereigns oder sein Komplementärereignis eintritt, gleich 1 ist. Beides kann ja nicht eintreten nach Definition.

Bezug
                        
Bezug
Wahrscheinlichkeit: Antwort
Status: (Antwort) fertig Status 
Datum: 09:57 Di 09.08.2011
Autor: Diophant

Hallo,

die Berechnung der Wahrscheinlichkeit eines Komplementär- bzw. Gegenereignisses geht anders:

Seien [mm] A\cup\overline{A}=\Omega [/mm] und [mm] A\cap\overline{A}=\emptyset [/mm]

Dann ist sicherlich

[mm] P(A)+P(\overline{A})=1 [/mm] bzw.

[mm] P(\overline{A})=1-P(A) [/mm]

Hilft dir das weiter, bzw. siehst du, wo dein Denkfehler liegt?

Gruß, Diophant

Bezug
                                
Bezug
Wahrscheinlichkeit: Rückfrage
Status: (Frage) beantwortet Status 
Datum: 10:26 Di 09.08.2011
Autor: Luigi.07


> Hallo,
>  
> die Berechnung der Wahrscheinlichkeit eines Komplementär-
> bzw. Gegenereignisses geht anders:
>  
> Seien [mm]A\cup\overline{A}=\Omega[/mm] und
> [mm]A\cap\overline{A}=\emptyset[/mm]
>  
> Dann ist sicherlich
>  
> [mm]P(A)+P(\overline{A})=1[/mm] bzw.
>  
> [mm]P(\overline{A})=1-P(A)[/mm]
>  
> Hilft dir das weiter, bzw. siehst du, wo dein Denkfehler
> liegt?
>  
> Gruß, Diophant

Da wir wissen, dass [mm]P(A) 0,395[/mm] ist dann wäre laut Berechnung $ [mm] P(\overline{A})=1-P(A) [/mm] $ somit [mm]P(0,605)=1-P(0,395)[/mm]

Frage 1 wäre mit 39,5% Wahrscheinlichkeit verirrt sich niemand
Frage 2 wäre dann mit 60,5% Wahrscheinlichkeit verirrt sich ein Kind
richtig oder falsch???

Bezug
                                        
Bezug
Wahrscheinlichkeit: Antwort
Status: (Antwort) fertig Status 
Datum: 10:50 Di 09.08.2011
Autor: Diophant

Hallo,

ich denke, du hast es richtig verstanden, deine Schreibweise ist aber völlig falsch. Richtig wäre

[mm] P(\overline{A})=1-0,395=0,605 [/mm]

Mit einer Wahrscheinlichkeit von 60,5% verirrt sich damit mindestens eines der Kinder.

Gruß, Diophant

Bezug
                                                
Bezug
Wahrscheinlichkeit: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 11:01 Di 09.08.2011
Autor: Dath

Gefragt ist in Aufgabe 2, dass sich höchstens ein kind verirrt, also die Wahrscheinlichkeit, dass sich entweder kein Kind (bekannt aus den vorangehenden Posts) verirrt, oder ein Junge verirrt oder ein Mädchen. D.h., du berechnest noch die Wahrscheinlichkeiten dafür, dass sich ein Mädchen verirrt, aber kein Junge, und die Wahrscheinlichkeit, dass sich ein Junge verirrt aber kein Mädchen. Die drei Wahrscheinlichkeiten addierst du dann (Das darfst du, weil die Ereignisse paarweise disjunkt sind und das gesuchte Ereignis sich aus genau diesen drei Ereignissen zusammensetzt).

Bezug
                                                        
Bezug
Wahrscheinlichkeit: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 11:04 Di 09.08.2011
Autor: Diophant

Hallo Luigi&Dath,

das ist richtig: ich hatte mich verlesen. Mein Tipp mit dem Gegenereignis hilft also hier nicht weiter. Sorry!

Gruß, Diophant

Bezug
                                                                
Bezug
Wahrscheinlichkeit: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 11:04 Di 09.08.2011
Autor: Dath

Kein Ding ;)

Bezug
                                                        
Bezug
Wahrscheinlichkeit: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 11:12 Di 09.08.2011
Autor: Dath

Die letzten zwei ereignisse berechnet man am besten mit der Multinomialverteilung.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de