www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Stochastik" - Wahrscheinlichkeit
Wahrscheinlichkeit < Stochastik < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Wahrscheinlichkeit: Kartenspiel
Status: (Frage) beantwortet Status 
Datum: 19:52 Di 30.08.2005
Autor: macanudo

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt:

Trotz intensivem Suchen konnte ich im Internet die Formel zu folgender Aufgabe nicht finden:

Ein Kartenspiel mit 52 Karten (4 Farben / je 13 Karten [2-Ass]).
Es werden 20 Karten gezogen (ohne zurücklegen).
Wie gross ist die Wahrscheinlichkeit, dass kein Ass gezogen wird?



        
Bezug
Wahrscheinlichkeit: Antwort
Status: (Antwort) fertig Status 
Datum: 19:55 Di 30.08.2005
Autor: Stefan

Hallo!

Aus den 48 Nicht-Assen werden 20 Karten, aus den 4 Assen keine Karte (ohne Zurücklegen und Beachtung der Reihenfolge) gezogen. Daher:

$p = [mm] \frac{{48 \choose 20} \cdot {4 \choose 0}}{{52 \choose 20}}$. [/mm]

Viele Grüße
Stefan

Bezug
                
Bezug
Wahrscheinlichkeit: Karten
Status: (Frage) beantwortet Status 
Datum: 22:01 Di 30.08.2005
Autor: macanudo

Besten Dank für die schnelle Antwort.

Leider kann ich mit dieser Formel nichts anfangen, da ich sie nicht zu entschlüsseln weiss (bin leider mathematisch eingerostet). Bitte habt Verständnis und ich Bitte um "Ausdeutschung" der Formel und um das Ergebnis.

Bezug
                        
Bezug
Wahrscheinlichkeit: Hilfe
Status: (Antwort) fertig Status 
Datum: 22:51 Di 30.08.2005
Autor: clwoe

Hi,

eine Wahrscheinlichkeit wird berechnet indem man die "Anzahl der günstigsten Ereignisse" durch die "Anzahl aller möglichen Ereignisse" dividiert.

Kurzform: p= [mm] \bruch{A}{Omega} [/mm]

A = Anzahl der günstigen Ereignisse
Omega = Anzahl aller möglichen Ereignisse

Die Zahlen in den Klammern sind der Binomialkoeffizient.

[mm] \vektor{52 \\ 20} [/mm] bedeutet, dass 20 Karten aus 52 Karten gezogen werden und zwar ohne zurücklegen und ohne Beachtung der Reihenfolge. Die Zahl die dabei herauskommt gibt dir an wieviele Möglichkeiten sich ergeben die 20 Karten aus den 52 Karten zu ziehen, also die Anzahl der verschiedenen Blätter die du auf die Hand bekommen kannst.

Die Zahl berechnet sich wie folgt über die Formel:
Die obere Zahl in der Klammer wird mit n abgekürzt, die untere meist mit k.

[mm] \vektor{52 \\ 20}= \bruch{n!}{k!(n-k)!}. [/mm]

Wobei 5! bedeutet: 5*4*3*2*1

In diesem Beispiel also:

[mm] \bruch{52!}{20!(52-20)!}. [/mm]

Das war alles. Ich hoffe es ist jetzt klarer.

Gruß,
clwoe


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de