www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Wahrscheinlichkeitstheorie" - Wahrscheinlichkeit Aufstellung
Wahrscheinlichkeit Aufstellung < Wahrscheinlichkeitstheorie < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Wahrscheinlichkeitstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Wahrscheinlichkeit Aufstellung: Aufgabenteil B
Status: (Frage) beantwortet Status 
Datum: 11:48 So 23.10.2011
Autor: animegz

Aufgabe
a) Wie viele (unterscheidbare) Möglichkeiten gibt es, 12 Personen für ein Foto nebeneinander anzuordnen, wenn darunter zwei (jeweils nicht unterscheidbare) eineiige Zwillingspaare sind?
b) Zugfahrt. Die 12 Personen verteilen sich auf 2 Abteile, in jedem Abteil gibt es 3 Sitzplätze in Fahrtrichtung und 3 Sitzplätze gegen die Fahrtrich-tung. Von den 12 Personen wollen auf alle Fälle 5 in Fahrtrichtung und 4 gegen die Fahrtrichtung sitzen. Wie viele Platzierungsmöglichkeiten gibt es, wenn man die Sitze unterscheidet?

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

Hallo Gemeinde,

A) sollte :
12 Personen , 2 Eineiige Zwillingspaare :
(12 über 2) * (10 über 2)= 12! / (2! * 2!) = 119750400 Möglichkeiten
ergeben ?!?

B)  Hier komme ich nicht weiter. wie baue ich den diese Bedingung noch ein?
Bei 2 Abteile und 6 Platzmöglichkeiten wäre es ja :
(12 über 6) * (6 über 6) = 924 Möglichkeiten
Aber keine Ahnung wie ich jetzt da weiterkomme.
Ich hoffe einer von euch kann mir da weiterhelfen.

Vielen Dank schoneinmal

        
Bezug
Wahrscheinlichkeit Aufstellung: Antwort
Status: (Antwort) fertig Status 
Datum: 13:34 Mi 26.10.2011
Autor: donquijote


> a) Wie viele (unterscheidbare) Möglichkeiten gibt es, 12
> Personen für ein Foto nebeneinander anzuordnen, wenn
> darunter zwei (jeweils nicht unterscheidbare) eineiige
> Zwillingspaare sind?
>  b) Zugfahrt. Die 12 Personen verteilen sich auf 2 Abteile,
> in jedem Abteil gibt es 3 Sitzplätze in Fahrtrichtung und
> 3 Sitzplätze gegen die Fahrtrich-tung. Von den 12 Personen
> wollen auf alle Fälle 5 in Fahrtrichtung und 4 gegen die
> Fahrtrichtung sitzen. Wie viele Platzierungsmöglichkeiten
> gibt es, wenn man die Sitze unterscheidet?
>  Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.
>  
> Hallo Gemeinde,
>  
> A) sollte :
>  12 Personen , 2 Eineiige Zwillingspaare :
>  (12 über 2) * (10 über 2)= 12! / (2! * 2!) = 119750400
> Möglichkeiten
>  ergeben ?!?

12! / (2! * 2!) ist korrekt, aber ich verstehe nicht, wie du auf (12 über 2) * (10 über 2) gekommen bist (das gibt einen anderen Wert).
Insgesamt gibt es 12! verschiedene Aufstellungen. Davon liefern allerdings jeweils 4 das gleiche Bild (indem Zwillinge untereinander ihre Plätze tauschen), daher die 12!/4 verschiedenen Bilder.

>  
> B)  Hier komme ich nicht weiter. wie baue ich den diese
> Bedingung noch ein?
>  Bei 2 Abteile und 6 Platzmöglichkeiten wäre es ja :
>  (12 über 6) * (6 über 6) = 924 Möglichkeiten
>  Aber keine Ahnung wie ich jetzt da weiterkomme.
>  Ich hoffe einer von euch kann mir da weiterhelfen.
>  

Mit Binomialkoeffizienten klappt auch das nicht (da es sich um eine Auswahl unter Beachtung der Reihenfolge handelt).
Zunächst bekommen die ersten 5 ihre Plätze in Fahrtrichtung, dafür gibt es 6*5*4*3*2 = 6! Möglichkeiten. Dann bekommen die nächsten 4 Plätze gegen die Fahrtrichtung, dazu gibt es 6*5*4*3 = 6!/2 Möglichkeiten (da noch alle 6 in Frage kommenden Plätze frei sind). Schließlich werden die restlichen 3 auf die noch freien Plätze verteilt, dazu gibt es 3*2*1 = 3! Mäglichkeiten. Insgesamt sind es also 6!*6!*3!/2 = 3*(6!)² Möglichkeiten.

> Vielen Dank schoneinmal


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Wahrscheinlichkeitstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de