www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Wahrscheinlichkeitsrechnung" - Wahrscheinlichkeit Geburten
Wahrscheinlichkeit Geburten < Wahrscheinlichkeit < Stochastik < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Wahrscheinlichkeitsrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Wahrscheinlichkeit Geburten: Möglicherweise Lösung falsch?
Status: (Frage) beantwortet Status 
Datum: 15:26 So 10.03.2013
Autor: baristoteles

Aufgabe
Die Wahrscheinlichkeit für die Geburt eines Jungen beträgt etwa 0,51.
Wie viele Kinder müssen mindestens geboren werden, damit mit mindestens 99% Wahrscheinlichkeit mindestens 5 Jungen dabei sind?

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

Mein Ansatz:
P ( X größer gleich 5) muss mindestens 0,99 ergeben
also eine Tabelle mit y1 = 1 - P(x [mm] \le [/mm] 4) mit x=n (Anzahl Geburten) und p=0,51 und schauen, für welchen x-Wert und somit welche Anzahl der Geburten y [mm] \ge [/mm] 0,99 wird. => für n=x=22 ist y das erste mal über 0,99 also müssen 22 Kinder geboren werden.

Nun ist die Lösung dieser Aufgabe im Buch: Es muss gelten P ( X [mm] \ge [/mm] 15) [mm] \ge [/mm] 0,99 bzw. P(X [mm] \le [/mm] 4) [mm] \le [/mm] 0,01. Aus der Tabelle der Funktion y1=binomcdf(x,0.51,4) liest man ab, dass die Zahl n der Geburten mindestens 19 betragen muss.

Nun meine Frage: Woher kommen die 15 ohne Vorwissen? Und wenn ich mit P (X [mm] \le [/mm] 4) rechne, bedeutet das doch die Wahrscheinlichkeit für HÖCHSTENS 4 Jungen, deswegen mein Ansatz mit 1- P (X [mm] \le [/mm] 4) da es MINDESTENS 5 Jungen sein sollen??

        
Bezug
Wahrscheinlichkeit Geburten: Antwort
Status: (Antwort) fertig Status 
Datum: 15:44 So 10.03.2013
Autor: MathePower

Hallo baristoteles,


[willkommenmr]


> Die Wahrscheinlichkeit für die Geburt eines Jungen
> beträgt etwa 0,51.
>  Wie viele Kinder müssen mindestens geboren werden, damit
> mit mindestens 99% Wahrscheinlichkeit mindestens 5 Jungen
> dabei sind?
>  Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.
>  
> Mein Ansatz:
>  P ( X größer gleich 5) muss mindestens 0,99 ergeben
>  also eine Tabelle mit y1 = 1 - P(x [mm]\le[/mm] 4) mit x=n (Anzahl
> Geburten) und p=0,51 und schauen, für welchen x-Wert und
> somit welche Anzahl der Geburten y [mm]\ge[/mm] 0,99 wird. => für
> n=x=22 ist y das erste mal über 0,99 also müssen 22
> Kinder geboren werden.
>  


Da hast Du wohl eine andere Verteilung benutzt.


> Nun ist die Lösung dieser Aufgabe im Buch: Es muss gelten
> P ( X [mm]\ge[/mm] 15) [mm]\ge[/mm] 0,99 bzw. P(X [mm]\le[/mm] 4) [mm]\le[/mm] 0,01. Aus der


Hier ist doch wohl eher gemeint: [mm]P ( X \ge \blue{5}) \ge 0,99[/mm]


> Tabelle der Funktion y1=binomcdf(x,0.51,4) liest man ab,
> dass die Zahl n der Geburten mindestens 19 betragen muss.
>  
> Nun meine Frage: Woher kommen die 15 ohne Vorwissen? Und


Wahrscheinlich ein Druckfehler.


> wenn ich mit P (X [mm]\le[/mm] 4) rechne, bedeutet das doch die
> Wahrscheinlichkeit für HÖCHSTENS 4 Jungen, deswegen mein
> Ansatz mit 1- P (X [mm]\le[/mm] 4) da es MINDESTENS 5 Jungen sein
> sollen??


Gruss
MathePower

Bezug
                
Bezug
Wahrscheinlichkeit Geburten: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:52 So 10.03.2013
Autor: baristoteles

Danke für die Antwort!
Was genau meinst du mit "andere Verteilung benutzt"? Ich sehe meine Ansatz immernoch als den richtigen, könntest du mir bitte erklären, wieso diese Verteilung falsch ist?

Bezug
                        
Bezug
Wahrscheinlichkeit Geburten: Antwort
Status: (Antwort) fertig Status 
Datum: 16:02 So 10.03.2013
Autor: MathePower

Hallo baristoteles,

> Danke für die Antwort!
>  Was genau meinst du mit "andere Verteilung benutzt"? Ich
> sehe meine Ansatz immernoch als den richtigen, könntest du
> mir bitte erklären, wieso diese Verteilung falsch ist?


Nun, da "n=22" laut Lösung nicht richtig ist,
nehme ich an, dass eine andere Verteilung benutzt wurde.

Oder hast Du Dich nur in der Zeile vertan?


Gruss
MathePower



Bezug
                        
Bezug
Wahrscheinlichkeit Geburten: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 16:02 So 10.03.2013
Autor: baristoteles

Okay nun habe ich es rausbekommen. Mein Taschenrechner muss einen Fehler gemacht haben glaube ich, diesmal finde ich die ersten 0,99 bei 19. Danke!

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Wahrscheinlichkeitsrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de