www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Wahrscheinlichkeitsrechnung" - Wahrscheinlichkeit Lose
Wahrscheinlichkeit Lose < Wahrscheinlichkeit < Stochastik < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Wahrscheinlichkeitsrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Wahrscheinlichkeit Lose: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:31 Mo 23.02.2009
Autor: Dinker

Guten Abend

[Dateianhang nicht öffentlich]

Aufgabe a)
Die Familie hat 8 Lose erworben.
Ein Los ist mit einer Wahrscheinlichkeit von 0.05 ein Gewinn.
Spontan hätte ich gesagt die Wahrscheinlichkeit wäre 0.2 [mm] \to [/mm] 20%
Aber bin mir überhaupt nicht sicher

----------------------------------------------------------------------------------------

Aufgabe b)
[mm] 0.95^{x} [/mm] = 0.01
x = 89.78 noch : 4 = 22.45
Kann das sein?

--------------------------------------------------------------------------------
Aufgabe c)
Mir fällt es irgendwie gerade einfach der Anteil der nicht Gewinnlose zu errechnen.
[mm] x^{50} [/mm] = 0.03
x = 0.932
1-0.932 = 0.068  [mm] \to [/mm] 6.8% Anteil der Gewinnlose

Ich hab noch eine Blöde frage.
Was ist eigentlich der genaue Unterschied zwischen Wahrscheinlichkeitsrechnen und Kombinatorik?
Ist Kombinatorik mehr wissenschaftlich, während man beim Wahrscheinlichkeitsrechnen sich Baumdiagramme etc. zur Hand nimmt?

Besten Dank
Gruss Dinker

Dateianhänge:
Anhang Nr. 1 (Typ: jpg) [nicht öffentlich]
        
Bezug
Wahrscheinlichkeit Lose: Antwort
Status: (Antwort) fertig Status 
Datum: 01:14 Di 24.02.2009
Autor: Fulla

Hallo Dinker,

> Guten Abend
>  
> Aufgabe a)
>  Die Familie hat 8 Lose erworben.
>  Ein Los ist mit einer Wahrscheinlichkeit von 0.05 ein
> Gewinn.
>  Spontan hätte ich gesagt die Wahrscheinlichkeit wäre 0.2
> [mm]\to[/mm] 20%
>  Aber bin mir überhaupt nicht sicher

Nicht ganz...
Statt "mindestens 2" ist es leichter die Wahrscheinlichkeit für das Gegenereignis "höchstens 1" zu berechnen. Bei "mind. 2" musst du die Wahrscheinlichkeiten für 2,3,4,5,6,7,8 Gewinnlose berechnen, bei "höchstens 1" nur für 0 und 1 Gewinnlos.

Also
[mm] $P(\text{mind. 2 Gewinnlose})=1-P(\text{höchstens 1 Gewinnlos})=1-(P(\text{kein Gewinnlos})+P(\text{genau 1 Gewinnlos}))$ [/mm]

Das kriegst du selber hin, oder? (Ich komme auf eine Wahrscheinlichkeit von 5,7%)
  

> ----------------------------------------------------------------------------------------
>  
> Aufgabe b)
>  [mm]0.95^{x}[/mm] = 0.01
>  x = 89.78 noch : 4 = 22.45
>  Kann das sein?

Ja, kann es. "Richtig" aufgeschrieben heißt es
[mm] $1-0,95^{4x}\geq [/mm] 0,99$
Nach $x$ aufgelöst: [mm] $x\geq\frac{\ln(0,01)}{4\ln(0,95)}\approx [/mm] 22,45$

Die Familie müsste also mindestens 23 mal die Ausstellung besuchen.

> --------------------------------------------------------------------------------
>  Aufgabe c)
>  Mir fällt es irgendwie gerade einfach der Anteil der nicht
> Gewinnlose zu errechnen.
>  [mm]x^{50}[/mm] = 0.03
> x = 0.932
>  1-0.932 = 0.068  [mm]\to[/mm] 6.8% Anteil der Gewinnlose

Auch das ist richtig. Aber schöner wäre es, wenn du schreibst:
[mm] $1-(1-x)^{50}\geq [/mm] 0,97$ wobei $x$ der Anteil der Gewinnlose ist.
Aufgelöst nach $x$ erhält man [mm] $1-x\leq e^{\frac{\ln(0,03)}{50}}$ [/mm] bzw. [mm] $x\geq e^{\frac{\ln(0,03)}{50}}-1\approx [/mm] 0,068$


> Ich hab noch eine Blöde frage.

Es gibt keine blöden Fragen...

>  Was ist eigentlich der genaue Unterschied zwischen
> Wahrscheinlichkeitsrechnen und Kombinatorik?
>  Ist Kombinatorik mehr wissenschaftlich, während man beim
> Wahrscheinlichkeitsrechnen sich Baumdiagramme etc. zur Hand
> nimmt?

"[]Kombinatorik ist ein Teilgebiet der Mathematik, das sich mit der Bestimmung der Zahl möglicher Anordnungen [...] beschäftigt."
Kombinatorik betreibst du immer, wenn du eine Anzahl von Möglichkeiten berechnest. (Z.B.: Du hast 3 blaue, 2 rote und 1 schwarze Kugel. Wie viele Möglichkeiten gibt es, die 6 Kugeln in einer Reihe anzuordnen?)

Die []Wahrscheinlichhkeitsrechnung beschäftigt sich, wie der Name schon sagt, mit der Berechnung von Wahrscheinlichkeiten. Dabei braucht man auch oft Kombinatorik, z.B. bei relativen Häufigkeiten ("Anzahl der günstigen Ereignisse / Anzahl der möglichen Ereignisse").

Die Frage, was von beidem "wissenschaftlicher" ist, erübrigt sich denk ich... Denn die Kombinatorik ist quasi ein Teilgebiet der Wahrscheinlichkeitsrechnung.
  

> Besten Dank
>  Gruss Dinker


Lieben Gruß,
Fulla

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Wahrscheinlichkeitsrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de