www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Wahrscheinlichkeitstheorie" - Wahrscheinlichkeit P(X<Y)
Wahrscheinlichkeit P(X<Y) < Wahrscheinlichkeitstheorie < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Wahrscheinlichkeitstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Wahrscheinlichkeit P(X<Y): Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:56 So 23.03.2014
Autor: wilmi

Aufgabe
Hallo, ich habe eine generelle Verständnisfrage:
Gegeben: Zwei unabhängige Zufallsvariablen X und Y und die gemeinsamen Dichten [mm] f_X(x) [/mm] und [mm] f_Y(x) [/mm] beide auf dem Intervall [0, [mm] \infty] [/mm]

Gesucht:

1. Die gemeinsame Dichte

2. Die Wahrscheinlichkeit für X<Y

Meine Fragen:

zu 1. :Dort würde ich einfach die beiden Dichten [mm] f_X(x) [/mm] und [mm] f_Y(x) [/mm] multiplizieren, wobei ich vorher die Variable x von [mm] f_Y(x) [/mm] durch y ersetze.

zu 2. : Dort würde ich ein doppeltes Integral aufstellen und dann lösen. Problem habe ich mit den Grenzen und der Reihenfolge der Integrale:

[mm] \int_0^{\infty}\int_y^{\infty} f_X(x) f_Y(x) [/mm] dxdy oder
[mm] \int_0^{\infty}\int_x^{\infty} f_X(x) f_Y(x) [/mm] dydx  oder
[mm] \int_0^{\infty}\int_0^{y} f_X(x) f_Y(x) [/mm] dxdy oder
[mm] \int_0^{\infty}\int_0^{x} f_X(x) f_Y(x) [/mm] dydx.

Bin da ziemlich ratlos und sehr dankbar für eine Erläuterung bzw. Hilfestellung.

Beste Grüße wilmi



        
Bezug
Wahrscheinlichkeit P(X<Y): Antwort
Status: (Antwort) fertig Status 
Datum: 16:42 So 23.03.2014
Autor: luis52

Moin

> zu 1. :Dort würde ich einfach die beiden Dichten [mm]f_X(x)[/mm]
> und [mm]f_Y(x)[/mm] multiplizieren, wobei ich vorher die Variable x
> von [mm]f_Y(x)[/mm] durch y ersetze.

[ok]

>  
> zu 2. : Dort würde ich ein doppeltes Integral aufstellen
> und dann lösen. Problem habe ich mit den Grenzen und der
> Reihenfolge der Integrale:
>  
> [mm]\int_0^{\infty}\int_y^{\infty} f_X(x) f_Y(x)[/mm] dxdy oder

[notok]

Warum beherzigst du nicht, was du oben geschrieben hast? Z.B.

$ [mm] \int_0^{\infty}\int_x^{\infty} f_X(x) f_Y(\red{y}) \, dy\,dx$ [/mm]

Bezug
                
Bezug
Wahrscheinlichkeit P(X<Y): Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:50 So 23.03.2014
Autor: wilmi

Hallo Luis,
danke für deine Antwort. Und für den Hinweis, dass ich bei der Integration auch x durch y ersetzen muss. Und wie sieht es mit den Grenzen und der Reihenfolge der Intergration aus? Woher weiß ich ob mein 2. Integral von x bzw. y nach [mm] \infty [/mm] läuft oder von 0 bis x bzw. y ?

Lg Wilmi

Bezug
                        
Bezug
Wahrscheinlichkeit P(X<Y): Antwort
Status: (Antwort) fertig Status 
Datum: 16:53 So 23.03.2014
Autor: luis52


> Hallo Luis,
>  danke für deine Antwort. Und für den Hinweis, dass ich
> bei der Integration auch x durch y ersetzen muss. Und wie
> sieht es mit den Grenzen und der Reihenfolge der
> Intergration aus? Woher weiß ich ob mein 2. Integral von x
> bzw. y nach [mm]\infty[/mm] läuft oder von 0 bis x bzw. y ?
>  
> Lg Wilmi

Das ist wurscht. ;-) Probier's aus, es kommt eine (naheliegende) Zahl heraus.


Bezug
                                
Bezug
Wahrscheinlichkeit P(X<Y): Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:29 So 23.03.2014
Autor: wilmi

Hallo Luis,
ich habe jetzt mal [mm] \int_0^\infty \int_x^\infty [/mm] exp(-x)*2*exp(-2y) dydx und [mm] \int_0^\infty \int_y^\infty [/mm] exp(-x)*2*exp(-2y) dxdy ausgerechnet. beim ersten kommt $$1/3$$ und beim zweiten $$2/3$$ heraus. Also sind die Integrale nicht gleich (wenn ich mich nicht verrechnet habe.)
Auch ist mir immer noch nicht ganz klar, ob ich die Grenze 0 oder die Grenze [mm] \infty [/mm] durch x oder y ersetze, wenn ich die Wahrscheinlichkeit ausrechnen will das X>Y ist.

LG wilmi

Bezug
                                        
Bezug
Wahrscheinlichkeit P(X<Y): Antwort
Status: (Antwort) fertig Status 
Datum: 18:01 So 23.03.2014
Autor: luis52

Gut, die Anmerkung mit der konkreten Zahl ($1/2_$) stimmt  dann, wenn $X$ und $Y$ identisch verteilt sind, was du jedoch nicht voraussetzen kannst. Aber irgendwelche Verteilungen zu verwenden ist nicht legitim.

Ich habe mir noch einmal deine Vorschlaege zur Berechnung von von $P(X<Y$) angeschaut:


> $ [mm] \int_0^{\infty}\int_y^{\infty} f_X(x) f_Y(y) [/mm]  dxdy$ oder

[notok]

> $ [mm] \int_0^{\infty}\int_x^{\infty} f_X(x) f_Y(y) [/mm] dydx$  oder

[ok]

>$ [mm] \int_0^{\infty}\int_0^{y} f_X(x) f_Y(y) [/mm]  dxdy$ oder

[ok]

> $ [mm] \int_0^{\infty}\int_0^{x} f_X(x) f_Y(y) [/mm]  dydx$.

[notok]







Bezug
                                                
Bezug
Wahrscheinlichkeit P(X<Y): Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:09 So 23.03.2014
Autor: wilmi

ok, vielen Dank für deine Hilfe.

Beste Grüße Wilmi

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Wahrscheinlichkeitstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de