www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Mathe Klassen 8-10" - Wahrscheinlichkeit Zählprinzip
Wahrscheinlichkeit Zählprinzip < Klassen 8-10 < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Mathe Klassen 8-10"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Wahrscheinlichkeit Zählprinzip: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:44 Mi 27.04.2011
Autor: peder

Aufgabe
In einem Scrable-Beutel befinden sich noch sieben Buchstabenplättchen: L, A, P, L, A, C und E. Thomas zieht ohne in den Beutel zu schauen nacheinander die Plättchen heraus und legt sie der Reihe nach neben einander (Ziehen ohne Zurücklegen).
a) Berechne, wie viele verschiedene (auch unsinnige) Wörter mit sieben Buchstaben Thomas so legen kann!
b) Berechne, wie hoch die Wahrscheinlichkeit dafür ist, dass das so gelegte Wort (sieben Buchstaben) mit A beginnt und mit A aufhört!
c) Berechne die Wahrscheinlichkeit dafür, dass Thomas das Wort „LAPLACE“ legt!

zu a)
Normalerweise würde ich hier das Zählprinzip anwenden, allerdings bereiten mir die doppelten Buchstaben Kopfzerbrechen.
Meine Idee war:  5*5*4*4*3*2*1=2400 Möglichkeiten, aber so einfach ist es glaub ich nicht, oder?

zu b)
Mein Vorschlag: 2*4*4*3*2*1*1 und das dann durch alle Möglichkeiten (vgl. Teilaufgabe a)  --> die bekomm ich aber nicht raus).

zu c)
Mein Vorschlag: 2*2*1*1*1*1*1 und das wieder durch alle Möglichkeiten teilen.


Könnt ihr mir bitte weiterhelfen? Kann man die Aufgabe überhaupt mit dem einfachen Zählprinzip und Laplace lösen?

Danke!


p.s. ich habe diese Frage in noch keinem andern Forum gestellt

        
Bezug
Wahrscheinlichkeit Zählprinzip: Antwort
Status: (Antwort) fertig Status 
Datum: 15:09 Mi 27.04.2011
Autor: Blech

Hi,

numerier die Plättchen zusätzlich klein durch

[mm] $L_1,A_2,P_3,L_4,A_5,C_6,E_7$ [/mm]

Jetzt nachdem Du 7 verschiedene Plättchen hast, wieviele Möglichkeiten gibt es sie anzuordnen?
Und auf wie viele verschiedene Weisen ordnest Du hier jedes Wort an? (d.h. [mm] $L_1,A_2,P_3,L_4,A_5,C_6,E_7$ [/mm] und [mm] $L_4,A_2,P_3,L_1,A_5,C_6,E_7$ [/mm] sind verschiedene Kombinationen aber die gleichen Wörter. Wie oft kann man hier umordnen, ohne das Wort zu ändern)


> 5*5*4*4*3*2*1=2400 Möglichkeiten, aber so einfach ist es glaub ich nicht, oder?

Das stimmt nur für einige wenige Reihenfolgen. Ziehst Du als erstes das E, dann hast Du beim zweiten Zug nur noch 4 Möglichkeiten. Andersrum zählst Du aber Möglichkeiten doppelt. Die echte Lösung ist aber nicht schwerer.

> b) Berechne, wie hoch die Wahrscheinlichkeit dafür ist, dass das so gelegte Wort (sieben Buchstaben) mit A beginnt und mit A aufhört!

Das reduziert das Problem auf die Frage: "Wieviele Möglichkeiten gibt es, L,L,P,C und E anzuordnen."



c)

> Mein Vorschlag: 2*2*1*1*1*1*1 und das wieder durch alle Möglichkeiten teilen.

Was sind denn die 4 Möglichkeiten, Laplace zu erhalten? Schreib sie mir mal hin. Bedenke, daß Du bei a) schon die Vertauschung von doppelten Buchstaben berücksichtigt hast. =)

ciao
Stefan

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Mathe Klassen 8-10"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de