www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Wahrscheinlichkeitstheorie" - Wahrscheinlichkeit berechnen
Wahrscheinlichkeit berechnen < Wahrscheinlichkeitstheorie < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Wahrscheinlichkeitstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Wahrscheinlichkeit berechnen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:44 Do 24.07.2008
Autor: snoopy_0903

Aufgabe
Von 120 Studenten besitzen 108 ein Handy, 90 einen Computer sowie 84 sowohl Handy als auch Computer.
Berechnen sie die Wahrscheinlichkeit dafür, dass ein Student:
a) Handy oder Computer besitzt
b) weder Handy noch Computer besitzt
c) ein Handy , aber keinen Computer besitzt.  

So, nun meine Frage:
zu a) kann ich da einfach das so ausrechnen: P()= 108/120 + 90/120 ???

zu b) P()= 12/120 + 30/120 ???

hat jemand eine Idee, wie ich die Aussage mit den 84... rechnerisch mit einbeziehen kann?

Vielen Dank


        
Bezug
Wahrscheinlichkeit berechnen: Antwort
Status: (Antwort) fertig Status 
Datum: 19:40 Do 24.07.2008
Autor: abakus


> Von 120 Studenten besitzen 108 ein Handy, 90 einen Computer
> sowie 84 sowohl Handy als auch Computer.

Also:
84 besitzen beides. Da 90 einen Computer besitzen, sind es also 6 weitere Personen, die nur einen Computer besitzen.
Analog besitzen (108-84=) 24 Personen nur ein Handy.
Mindestens eins von beiden besitzen also 84+6+24=114 Personen.
Gruß Abakus


>  Berechnen sie die Wahrscheinlichkeit dafür, dass ein
> Student:
>  a) Handy oder Computer besitzt
>  b) weder Handy noch Computer besitzt
>  c) ein Handy , aber keinen Computer besitzt.
> So, nun meine Frage:
>  zu a) kann ich da einfach das so ausrechnen: P()= 108/120
> + 90/120 ???
>  
> zu b) P()= 12/120 + 30/120 ???
>  
> hat jemand eine Idee, wie ich die Aussage mit den 84...
> rechnerisch mit einbeziehen kann?
>  
> Vielen Dank
>  


Bezug
        
Bezug
Wahrscheinlichkeit berechnen: Antwort
Status: (Antwort) fertig Status 
Datum: 19:49 Do 24.07.2008
Autor: M.Rex

Hallo

> Von 120 Studenten besitzen 108 ein Handy, 90 einen Computer
> sowie 84 sowohl Handy als auch Computer.
>  Berechnen sie die Wahrscheinlichkeit dafür, dass ein
> Student:
>  a) Handy oder Computer besitzt
>  b) weder Handy noch Computer besitzt
>  c) ein Handy , aber keinen Computer besitzt.
> So, nun meine Frage:
>  zu a) kann ich da einfach das so ausrechnen: P()= 108/120
> + 90/120 ???

Das wären [mm] \bruch{198}{120}>1 [/mm] und das kann nicht sein.

>  
> zu b) P()= 12/120 + 30/120 ???
>  
> hat jemand eine Idee, wie ich die Aussage mit den 84...
> rechnerisch mit einbeziehen kann?
>  
> Vielen Dank


Alternativ kannst du auch eine Vierfeldertafel aufstellen, das führt auch zum Ziel

Marius

>  


Bezug
        
Bezug
Wahrscheinlichkeit berechnen: Antwort
Status: (Antwort) fertig Status 
Datum: 20:03 Do 24.07.2008
Autor: Somebody


> Von 120 Studenten besitzen 108 ein Handy, 90 einen Computer
> sowie 84 sowohl Handy als auch Computer.
>  Berechnen sie die Wahrscheinlichkeit dafür, dass ein
> Student:
>  a) Handy oder Computer besitzt
>  b) weder Handy noch Computer besitzt
>  c) ein Handy , aber keinen Computer besitzt.
> So, nun meine Frage:
>  zu a) kann ich da einfach das so ausrechnen: P()= 108/120
> + 90/120 ???
>  
> zu b) P()= 12/120 + 30/120 ???
>  
> hat jemand eine Idee, wie ich die Aussage mit den 84...
> rechnerisch mit einbeziehen kann?

Dies lässt sich doch wunderbar einfach lösen, passende Notation vorausgesetzt: Sei [mm] $P(H)=\frac{108}{120}=0.9$ [/mm] die W'keit, dass ein Student ein Handy, [mm] $P(C)=\frac{90}{120}=0.75$, [/mm] die W'keit, dass er einen Computer und [mm] $P(H\cap C)=\frac{84}{120}=0.7$ [/mm] die W'keit, dass er einen Computer und ein Handy besitzt. Dann ist

[mm]\text{a)}\qquad P(H\cup C)=P(H)+P(C)-P(H\cap C)=\ldots[/mm]

und

[mm]\text{b)}\qquad P(\overline{H\cup C})=1-P(H\cup C)=\ldots[/mm]


sowie

[mm]\text{c)}\qquad P(H\cap \overline{C})=P(H)-P(H\cap C)=\ldots[/mm]



Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Wahrscheinlichkeitstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de