www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Wahrscheinlichkeitstheorie" - Wahrscheinlichkeit für doppelt
Wahrscheinlichkeit für doppelt < Wahrscheinlichkeitstheorie < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Wahrscheinlichkeitstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Wahrscheinlichkeit für doppelt: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:32 So 13.01.2013
Autor: thorstenbk

Für 10000 Objekte werden zufällige Adressen vergeben. Der Adressraum beinhaltet 65536 unterschiedliche Adressen.

Wie hoch ist die Wahrscheinlichkeit, dass mindestens zwei Objekte eine gleiche Adresse zugewiesen bekommen?

Das ganze ist nichts anderes als das Geburtstagsphänomen, nur mit größeren Zahlen. Die Formel dazu:

P=1-65536!/((65536-10000)!*65536^10000)

Mein Problem:
Der Taschenrechner liefert kein Ergebnis, da zu große Zahlen vorkommen. Hat jmd eine Idee?
Eventuell durch Approximation?

gruß
thorsten

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Wahrscheinlichkeit für doppelt: Antwort
Status: (Antwort) fertig Status 
Datum: 19:41 So 13.01.2013
Autor: Al-Chwarizmi

Guten Abend Thorsten !


> Für 10000 Objekte werden zufällige Adressen vergeben. Der
> Adressraum beinhaltet 65536 unterschiedliche Adressen.
>  
> Wie hoch ist die Wahrscheinlichkeit, dass mindestens zwei
> Objekte eine gleiche Adresse zugewiesen bekommen?
>  
> Das ganze ist nichts anderes als das Geburtstagsphänomen,
> nur mit größeren Zahlen. Die Formel dazu:
>  
> P=1-65536!/((65536-10000)!*65536^10000)
>  
> Mein Problem:
>  Der Taschenrechner liefert kein Ergebnis, da zu große
> Zahlen vorkommen. Hat jmd eine Idee?
>  Eventuell durch Approximation?


Ja, versuch's doch mal mit der Formel von Stirling zur
Approximation der Fakultäten !
Auch damit kommt ein Taschenrechner möglicherweise
noch ins Rotieren, aber es gibt ja noch die Logarithmen !
Ich würde dir aber empfehlen, zuerst einmal noch deine
Rechnung zu überprüfen.

LG,   Al-Chwarizmi

Bezug
                
Bezug
Wahrscheinlichkeit für doppelt: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:52 So 13.01.2013
Autor: thorstenbk

danke für die schnelle antwort.
also die formel sollte soweit richtig sein.
wie meinst du das mit den logarithmen?

Bezug
                        
Bezug
Wahrscheinlichkeit für doppelt: Antwort
Status: (Antwort) fertig Status 
Datum: 20:16 So 13.01.2013
Autor: Gonozal_IX

Hiho,

>  also die formel sollte soweit richtig sein.

"Sollte" ist nicht "ist", sie ist nämlich falsch.
Schau dir mal die Formel nochmal für bspw. 3 Adressen an, dann solltest du deinen Fehler recht schnell finden.

>  wie meinst du das mit den logarithmen?

Na wenn "x = Produkt aus vielen großen Zahlen mit Potenzen" gilt offensichtlich "ln(x) = ln(Produkt aus vielen großen Zahlen mit Potenzen)" wobei du die rechte Seite mit Rechenregeln für den Logarithmus berechnen kannst und die Zahlen viel viel kleiner werden, so dass dein Taschenrechner sie noch schafft.

MFG,
Gono.

Bezug
                        
Bezug
Wahrscheinlichkeit für doppelt: Analyse eines Bruches
Status: (Antwort) fertig Status 
Datum: 21:15 So 13.01.2013
Autor: Al-Chwarizmi


> danke für die schnelle antwort.
>  also die formel sollte soweit richtig sein.

Möglicherweise habe ich mich geirrt. Ich habe deine
Formel Mathematica gefüttert (das liebt solche Monster-
Rechnungen innig !) und als Resultat nur eine mehr als
ellenlange bzw. bildschirmfüllende Zahl erhalten und
dabei nicht mal gemerkt, dass die so ungefähr in ihrer
Mitte noch einen Bruchstrich enthält ...

Jetzt habe ich Zähler und Nenner separat angeguckt und
gebe hier jeweils nur relativ kurze Anfangsstücke (!!)
davon wieder:


Zähler:

246683230688191251927445698213992350332690632272392780259573308770988138059720\ 215602169294882614050302789177980404634718009646146456307563171878151563904915\ 873919376216095052658732015475411933310939259644879256811355807488691403969616\ 349376286480482652501713365514519364671783062362762614135628332091235918330519\ 443077894287375526126378538100140689221328351237476545856576031699920224276344\ 483401419492009857074452743066398662396051140569319110154863815348034581271935\ 695397672860830676895714663255014251138853943629637616107797270618239637369023\ 84648 ......


Nenner:

246683230688191251927445698213992350332690632272392780259573308770988138059720\ 215602169294882614050302789177980404634718009646146456307563171878151563904915\ 873919376216095052658732015475411933310939259644879256811355807488691403969616\ 349376286480482652501713365514519364671783062362762614135628332091235918330519\ 443077894287375526126378538100140689227903697764591789254374922426534542583332\ 822613628260020884833839697597394843934056311657436910596516965348684369386910\ 109281922559984520534066299007733270793278842864784253744655304131588687456585\ 24685 ......


Insgesamt haben Zähler und Nenner je über 45'000
Dezimalstellen, und zwar exakt gleich viele !

LG ,   Al-Chwarizmi


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Wahrscheinlichkeitstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de