www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Stochastik" - Wahrscheinlichkeitberechnung!
Wahrscheinlichkeitberechnung! < Stochastik < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Wahrscheinlichkeitberechnung!: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:39 So 29.01.2006
Autor: steph

Aufgabe
1.000 Mitarbeiter eines großen Konzerns wurden nach ihrerer Sportlichkeit befragt. Unter diesen 1.000 Mitarbeitern, gibt es 300 Sportler, die anderen sind Nicht-Sportler. Unter den Mitarbeitern werden 10 ausgewählt. Wie groß ist die Wahrscheinlichkeit, dass höchstens 2 Personen Sportler sind?

Hallo Zusammen !

Ich hoffe ihr könnt mir helfen, es wäre wichtig. Ich meine man muss, den Bernoulli anwenden, also

B(10, 0,066, 2) Stimmt das so ?? Oder, wie wäre es ansonsten korrek`?

Wäre dringend und würde mcih über eine baldige Antwort freuen!!

gruss aus stuttgart
steph

        
Bezug
Wahrscheinlichkeitberechnung!: Antwort
Status: (Antwort) fertig Status 
Datum: 18:27 So 29.01.2006
Autor: Zwerglein

Hi, steph,

> 1.000 Mitarbeiter eines großen Konzerns wurden nach ihrerer
> Sportlichkeit befragt. Unter diesen 1.000 Mitarbeitern,
> gibt es 300 Sportler, die anderen sind Nicht-Sportler.
> Unter den Mitarbeitern werden 10 ausgewählt. Wie groß ist
> die Wahrscheinlichkeit, dass höchstens 2 Personen Sportler
> sind?

> Ich hoffe ihr könnt mir helfen, es wäre wichtig. Ich meine
> man muss, den Bernoulli anwenden,

Denke ich auch! Die sehr große Zahl an Personen (1000) deutet drauf hin, dass man zumindest näherungsweise mit der Bernoulli-Kette arbeiten kann!

>  
> B(10, 0,066, 2) Stimmt das so ??

Natürlich nicht!

1. Wie kommst Du auf diese Trefferwahrscheinlichkeit? Wenn 300 von 1000 Leuten Sportler sind, ist die Trefferwahrscheinlichkeit p=0,3.

2. "Höchstens zwei" heißt doch nicht, dass dann genau zwei Sportler erwischt worden sind; es könnte auch bloß einer, ja sogar keiner dabei sein!

Daher: B(10; 0,3; [mm] k\le2) [/mm] = B(10; 0,3; 0) + B(10; 0,3; 1) + B(10; 0,3; 2)

Klaro?

mfG!
Zwerglein

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de