www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "mathematische Statistik" - Wahrscheinlichkeiten
Wahrscheinlichkeiten < math. Statistik < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "mathematische Statistik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Wahrscheinlichkeiten: Idee
Status: (Frage) beantwortet Status 
Datum: 09:44 Fr 09.07.2010
Autor: A1187

Aufgabe
Die durchschnittliche Abweichung von der erwarteten Haltbarkeitsdauer des Impfschutzpräparates "K2" beträgt 17 Tage. Bis zu welcher Frist hält das Präparat mit einer Wahrscheinlichkeit von 95 %?

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

Ich würde diese Aufgabe mit Tschebyscaheff lösen. Jedoch komme ich auf keine vernünftige Lösung. Vielleicht hat ja von euch jemand ne Idee, wie man da vorgehen muss.

        
Bezug
Wahrscheinlichkeiten: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 15:40 Fr 09.07.2010
Autor: Martinius

Hallo,

mir kommt da die Exponentialverteilung in den Sinn:

[]http://de.wikipedia.org/wiki/Exponentialverteilung

mit [mm] \mu=\sigma=\bruch{1}{\lambda}=17d [/mm] ;

sicher bin ich aber nicht.

LG, Martinius

Bezug
                
Bezug
Wahrscheinlichkeiten: Rückfrage
Status: (Frage) beantwortet Status 
Datum: 16:55 Fr 09.07.2010
Autor: A1187

ich habe jetzt gerade mal [mm] \lambda [/mm] ausgerechnet und und ich würde da auf 0,176 kommen.... aber ich würde dann wenn ich weiterrechne nicht auf ein sinnvolles Ergebniss kommen.

Die Lösung müsst bis zu 51 Tage sein.

Vielleicht hat ja jemand noch ne Idee;-)

Bezug
                        
Bezug
Wahrscheinlichkeiten: Antwort
Status: (Antwort) fertig Status 
Datum: 18:14 Fr 09.07.2010
Autor: ullim

Hi,

nimm doch mal die Expotentialverteilung mit [mm] \lambda=\bruch{1}{17} [/mm] so wie von Martinius vorgeschlagen und berechne den Wert t, für den

[mm] \integral_{0}^{t}{\lambda*e^{-\lambda*x} dx}=0.95 [/mm] gilt.

Du wirst sehen es kommt t=51 raus.




Bezug
        
Bezug
Wahrscheinlichkeiten: Antwort
Status: (Antwort) fertig Status 
Datum: 18:25 Fr 09.07.2010
Autor: Marcel

Hallo,

siehe hier.

Hinweis:
[mm] $$\int \lambda e^{-\lambda x}dx=- \int e^{-\lambda x} (-\lambda dx)=-\int e^{u} du=-e^{-\lambda x}\,. [/mm] $$

Beste Grüße,
Marcel

Bezug
                
Bezug
Wahrscheinlichkeiten: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:41 Fr 09.07.2010
Autor: ullim

Hi,

mit den Grenzen ergibt sich

[mm] \integral_{0}^{t}{\lambda e^{-\lambda x}dx}=1-e^{-\lambda x} [/mm]



Bezug
                        
Bezug
Wahrscheinlichkeiten: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:46 Fr 09.07.2010
Autor: Marcel

Hallo,

> Hi,
>  
> mit den Grenzen ergibt sich
>
> [mm]\integral_{0}^{t}{\lambda e^{-\lambda x}dx}=1-e^{-\lambda \red{x}}[/mm]

wenn man [mm] $\red{x}$ [/mm] durch [mm] $t\,$ [/mm] ersetzt, dann ja!
Das folgt z.B. sofort aus meinem Hinweis. Hier ist übrigens noch speziell [mm] $\lambda=1/17\,$ [/mm] (irgendwann jedenfalls) einzusetzen, und irgendwann kommt man auf eine Rechnung, wo der [mm] $\ln$ [/mm] benutzt werden sollte.

Beste Grüße,
Marcel

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "mathematische Statistik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de