www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Wahrscheinlichkeitsrechnung" - Wahrscheinlichkeiten
Wahrscheinlichkeiten < Wahrscheinlichkeit < Stochastik < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Wahrscheinlichkeitsrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Wahrscheinlichkeiten: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:51 Mo 10.10.2011
Autor: Mathics

Aufgabe
Bei einem 400-m-Lauf starten für die beiden teilnehmenden Mannschaften je 3 Läuferinnen. Die Bahnen werden ausgelost. Die Innenbahn (Nr.1) bleibt frei. Die Lose enthalten die Nummern 2,3,4,5,6 und 7. Niedrige Nummern gelten als glückliches Los. Als Maß für das Losglück einer Mannschaft kann die Summe der drei Bahnnummern angesehen werden.

a) Mit welchen Wahrscheinlichkeiten treten die verschiedenen Summen auf?
b) Mit welcher Wahrscheinlichkeit ist die Summe der Bahnnummern (1) kleiner als 12; (2) größer aks 7; (3) mindestens gleich 14?

Hallo,

ich scheitere schon bei a). Mit dem Binomialkoeffizienten habe ich berechnet, dass es ingesamt 120 mögliche  Kombinationen gibt. Aber wie kriege ich die Wahrscheinlichkeiten der einzelnen Summen heraus? Die niedrigste Summe ist  ja 9 und die höchste 18. Muss ich alle Möglichkeiten per Hand aufschreiben und gucken wie oft die Summen vorkommen?

        
Bezug
Wahrscheinlichkeiten: Antwort
Status: (Antwort) fertig Status 
Datum: 14:50 Mo 10.10.2011
Autor: luis52

Moin,


> ich scheitere schon bei a). Mit dem Binomialkoeffizienten
> habe ich berechnet, dass es ingesamt 120 mögliche  
> Kombinationen gibt.

Ich zaehle 20:

1:      [,1] [,2] [,3]
2:  [1,]    5    6    7
3:  [2,]    4    6    7
4:  [3,]    4    5    7
5:  [4,]    4    5    6
6:  [5,]    3    6    7
7:  [6,]    3    5    7
8:  [7,]    3    5    6
9:  [8,]    3    4    7
10:  [9,]    3    4    6
11: [10,]    3    4    5
12: [11,]    2    6    7
13: [12,]    2    5    7
14: [13,]    2    5    6
15: [14,]    2    4    7
16: [15,]    2    4    6
17: [16,]    2    4    5
18: [17,]    2    3    7
19: [18,]    2    3    6
20: [19,]    2    3    5
21: [20,]    2    3    4


Ups, da muss ich noch die Permutationen beruecksichtigen: $3!=6_$. Also kann ich auch dein Ergebnis nachvollziehen. Bestimme nun fuer jeden Fall die Summe.

vg Luis

Bezug
                
Bezug
Wahrscheinlichkeiten: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:13 Mo 10.10.2011
Autor: Mathics

Ja aber gibt es denn keine Möglichkeit, die Wahrscheinlichkeiten für die Summen durch eine Formel auszudrücken?

Bezug
                        
Bezug
Wahrscheinlichkeiten: Antwort
Status: (Antwort) fertig Status 
Datum: 20:50 Mo 10.10.2011
Autor: luis52


> Ja aber gibt es denn keine Möglichkeit, die
> Wahrscheinlichkeiten für die Summen durch eine Formel
> auszudrücken?

Schon, aber die ist nicht sehr hilfreich.

[mm] $P(X=s)=\frac{\#\{(x_1,x_2,x_3)\mid x_1x_2,x_3=2,\dots,7.x_1\ne x_2,x_2\ne x_3,x_1\ne x_3,\sum x_i=s\}}{120}$. [/mm]


Das Ganze ist in der Theorie der Partition von Zahlen angesiedelt. Ich denke, es ist direkter, zu Fuss abzuzaehlen.


vg Luis


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Wahrscheinlichkeitsrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de