www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Statistik (Anwendungen)" - Wahrscheinlichkeiten bestimmen
Wahrscheinlichkeiten bestimmen < Statistik (Anwend.) < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Statistik (Anwendungen)"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Wahrscheinlichkeiten bestimmen: Korrektur
Status: (Frage) beantwortet Status 
Datum: 14:37 Mo 01.02.2010
Autor: JonasK

Aufgabe 1
Sei X  N(-2; 25) verteilt

b) Bestimmen Sie die Wahrscheinlichkeit, da X einen Wert zwischen -7 und 8 annimmt.

Aufgabe 2
Ein Angler behauptet, da die Anzahl der von ihm an einem Tag gefangenen Fische
einer Poissonverteilung mit Erwartungswert lamdba = 5 folgt. Wie groß ist dann der
Parameter  und die Varianz dieser Poissonverteilung?

(b) Der Angler gibt zu, da er an 10% der Tage uberhaupt keinen Fisch fangt. Nehmen
Sie an, da die Anzahl X der von ihm an einem Tag gefangenen Fische tatsachlich
einer Poissonverteilung folgt, fur die P(X = 0) = 0:1 gilt. Wie gro ist dann der
Parameter der Poissonverteilung und der Erwartungswert der Anzahl von ihm an
einem Tag gefangener Fische wirklich?

Ich habe erstmal -7(a) und 8(b) auf N(0,1) standardisiert.  

P( -0,2 [mm] \le [/mm] x [mm] \le [/mm] 0,4) = [mm] \Phi [/mm] (b) - [mm] \Phi(a)= [/mm] 0.655 -0.579= 0,076

wäre das so korrekt?


Aufgabe 2:

Zu a) Lambda= Erwartungswert = Varianz = 5 ?

bei b) weiß ich leider nicht weiter, da mir n fehlt. Lässt sich das so überhaupt lösen?

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt

        
Bezug
Wahrscheinlichkeiten bestimmen: Antwort
Status: (Antwort) fertig Status 
Datum: 18:15 Mo 01.02.2010
Autor: steppenhahn

Hallo,

> Sei X  N(-2; 25) verteilt
>  
> b) Bestimmen Sie die Wahrscheinlichkeit, da X einen Wert
> zwischen -7 und 8 annimmt.
>  Ein Angler behauptet, da die Anzahl der von ihm an einem
> Tag gefangenen Fische
>  einer Poissonverteilung mit Erwartungswert lamdba = 5
> folgt. Wie groß ist dann der
>  Parameter  und die Varianz dieser Poissonverteilung?
>  
> (b) Der Angler gibt zu, da er an 10% der Tage uberhaupt
> keinen Fisch fangt. Nehmen
>  Sie an, da die Anzahl X der von ihm an einem Tag
> gefangenen Fische tatsachlich
>  einer Poissonverteilung folgt, fur die P(X = 0) = 0:1
> gilt. Wie gro ist dann der
>  Parameter der Poissonverteilung und der Erwartungswert der
> Anzahl von ihm an
>  einem Tag gefangener Fische wirklich?
>  Ich habe erstmal -7(a) und 8(b) auf N(0,1) standardisiert.
>  
>
> P( -0,2 [mm]\le[/mm] x [mm]\le[/mm] 0,4) = [mm]\Phi[/mm] (b) - [mm]\Phi(a)=[/mm] 0.655 -0.579=
> 0,076
>  
> wäre das so korrekt?

Ein bisschen wenig, oder? Schließlich liegt der Erwartungswert (-2) satt in dem vorgegebenen Intervall.
Du hast es falsch standardisiert:

Wenn X [mm] \sim N(\mu, \sigma^{2}), [/mm] dann ist [mm] \frac{X-\mu}{\sigma}\sim [/mm] N(0,1).
Du hast wahrscheinlich nicht die Wurzel aus der Varianz gezogen, bevor du deine Grenzen dadurch geteilt hast.


> Aufgabe 2:
>  
> Zu a) Lambda= Erwartungswert = Varianz = 5 ?

Genau [ok].

> bei b) weiß ich leider nicht weiter, da mir n fehlt.
> Lässt sich das so überhaupt lösen?

Ich denke schon:
Wenn X Poisson-verteilt ist zu Parameter [mm] \lambda, [/mm] dann gilt:

$P(X=k) = [mm] \frac{\lambda^{k}}{k!}*e^{-\lambda}$. [/mm]

Nun musst du einfach deine bekannte P(X=0) = 0.1 einsetzen und nach [mm] \lambda [/mm] umstellen!

Grüße,
Stefan

Bezug
                
Bezug
Wahrscheinlichkeiten bestimmen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:19 Mo 01.02.2010
Autor: JonasK

Ah danke, wirklich dummer Fehler nun siehts bei mir so aus

P(-1 [mm] \le [/mm] Z [mm] \le [/mm] 2) = [mm] \Phi [/mm] (2) - (1- [mm] \Phi [/mm] (1) [mm] \approx [/mm] 80%

Bezug
                        
Bezug
Wahrscheinlichkeiten bestimmen: Antwort
Status: (Antwort) fertig Status 
Datum: 19:22 Mo 01.02.2010
Autor: steppenhahn

Hallo,

> Ah danke, wirklich dummer Fehler nun siehts bei mir so aus
>  
> P(-1 [mm]\le[/mm] Z [mm]\le[/mm] 2) = [mm]\Phi[/mm] (2) - (1- [mm]\Phi[/mm] (1) [mm]\approx[/mm] 80%

Das stimmt schon eher :-)

Ich komme aber auf rund 82%.

Grüße,
Stefan

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Statistik (Anwendungen)"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de