www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Kombinatorik" - Wahrscheinlichkeitsberechnung
Wahrscheinlichkeitsberechnung < Kombinatorik < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Kombinatorik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Wahrscheinlichkeitsberechnung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:47 Di 19.02.2008
Autor: Maths

Aufgabe
Nach einem Picknick vermisst eine Familie ihren Hund. Es gibt drei Möglichkeiten:
A: Er ist heimgelaufen und erwartet die Familie vor der Haustür.
B: Er bearbeitet noch den großen Knochen auf dem Picknick-Platz.
C: Er streunt im Wald.
Auf grund der Gewohnheiten des Hundes, kennt man die Wahrscheinlichkeiten für das Eintreten der Ereignisse A, B, und C.
P(A)= 1/4 ; P(B)= 1/2   , P(C) = 1/4

Je ein Kind wird zurück an den Picknickplatz und an den Wald geschickt. Wenn der Hund an der ersten Stelle ist, findet man ihn mit einer Wahrscheinlichkeit von 90%. Streunt er aber, beträgt die Wahrschienlichkeit nur noch 50%.

a) MIt welcher Wahrscheinlichkeit wird eines der beiden KInder den Hund finden?

b) Wie groß ist die Wahrscheinlichkeit dafür, ihn vor der Hautür anzutreffen, falls die KInder den Hund nicht finden?

Hallo.
Ich stecke gerade mitten in den Klausurvorbereitungen für STochastik. Nun bin ich bei älteren Klausuren auf diese Aufgabe gestosse.
Ich habe keinerlei Idee, wie ich die beiden Wahrscheinlichkeiten gescheid unterbringe.
Kann mit bitte bitte jemand helfen?!?

Danke
MfG

        
Bezug
Wahrscheinlichkeitsberechnung: Antwort
Status: (Antwort) fertig Status 
Datum: 16:32 Di 19.02.2008
Autor: luis52

Moin Stefanie,

>  Ich habe keinerlei Idee, wie ich die beiden
> Wahrscheinlichkeiten gescheid unterbringe.

Na, dann sehe ich aber schwarz fuer deine Chancen...

Sei F das Ereignis Hund wird gefunden.

a) [mm] $P(F)=P(F\mid B)P(B)+P(F\mid [/mm] C)P(C)=0.180+0.125=0.305$.

b) Gesucht ist [mm] $P(A\mid \overline{F})=P(A\cap\overline{F})/P(\overline{F})$. [/mm] Es ist aber

[mm] $\overline{F}=A\cup(\overline{F}\cap B)\cup(\overline{F}\cap [/mm] C)$. Diese drei Ereignisse schliessen
einander aus. Ausserdem ist [mm] $A\cap\overline{F}=A$. [/mm] Mithin ist

[mm] $P(A\mid \overline{F})=\frac{0.25}{0.25+0.320+0.125}=0.3597$ [/mm]

vg
Luis


Bezug
                
Bezug
Wahrscheinlichkeitsberechnung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:56 Di 19.02.2008
Autor: Maths

Aufgabe
Danke, aber leider kann ich deine Rechnugn ncoh nciht ganz nachvollziehen!?

Also wenn ich das rechner komme ich bei :
[mm] P(F\mid [/mm] B)P(B) auf 0,45.

Außerdem verstehe ich nicht ganz deine REchnung bei b) im Nenner. Kannst du die vielleicht nochmal bitte genau auflisten?
Wäre nett!!!

Bezug
                        
Bezug
Wahrscheinlichkeitsberechnung: Antwort
Status: (Antwort) fertig Status 
Datum: 17:19 Di 19.02.2008
Autor: luis52


> Danke, aber leider kann ich deine Rechnugn ncoh nciht ganz
> nachvollziehen!?
>  Also wenn ich das rechner komme ich bei :
>  [mm]P(F\mid[/mm] B)P(B) auf 0,45.

Stimmt. Da habe ich mich verrechnet.

>  
> Außerdem verstehe ich nicht ganz deine REchnung bei b) im
> Nenner. Kannst du die vielleicht nochmal bitte genau
> auflisten?

Der Hund wird nicht gefunden, wenn er nach Hause gelaufen ist
(Ereignis A) oder aber er streunt oder ist am Picknickplatz  und an
jenen Orten wird er nicht gefunden (Ereignis [mm] $((\overline{F}\cap [/mm] B) [mm] \cup (\overline{F}\cap [/mm] C))$).
Mit deiner Korrektur erhalte *ich* nun:

[mm] $P(A\mid \overline{F})=\frac{0.25}{0.25+0.05+0.125}=0.5882$. [/mm]


vg Luis




Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Kombinatorik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de