www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Wahrscheinlichkeitsrechnung" - Wahrscheinlichkeitsberechnung
Wahrscheinlichkeitsberechnung < Wahrscheinlichkeit < Stochastik < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Wahrscheinlichkeitsrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Wahrscheinlichkeitsberechnung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:50 Di 14.04.2009
Autor: Razorback

Aufgabe
Ein Betrieb stellt Kunststoffplatten her, die entweder einwandfrei oder fehlerhaft sind. die Platten werden in Pakete zu 10 Stück verpackt. Die Pakete haben die Qualitätsstufen 1. Wahl, 2. Wahl und 3. Wahl. Ein Paket 1. Wahl enthält lauter einwandfreie Platten. In den Paketen 2. Wahl ist jede Platte mit der Wahrscheinlichkeit 0,1 fehlerhaft; in den Paketen 3. Wahl ist diese Wahrscheinlichkeit 0,3.

Wie groß ist die Wahrscheinlichkeit, dass sich in 50 Paketen 2. Wahl mehr fehlerhafte Platten befinden als in 20 Paketen 3. Wahl?

Hallo zusammen,

ich komme bei dieser Aufgabe nicht richtig weiter. Mir ist klar, das der Aufgabentext hergibt, dass die Wahrscheinlichkeit berechnet werden soll, dass von 500 Platten, von denen jede mit 0,1 defekt ist (E(x)=50) mehr defekt sind als von 200 Platten von denen jede mit 0,3 defekt ist. (E(x)=60).
Meiner Überlegung nach könnte man einfach berechnen wie groß die Wahrscheinlichkeit ist, dass von den 500 Platten mehr als 60 defekt sind, wobei dies ja nicht einschließt, dass von den 200 ja durchaus weniger als 60 defekt sein können, daher denke ich, dass dies nicht der richtige Ansatz ist.

Über jede Hilfe würde ich mich sehr freuen

Lg Razorback

        
Bezug
Wahrscheinlichkeitsberechnung: Skizze
Status: (Antwort) fertig Status 
Datum: 14:36 Di 14.04.2009
Autor: karma

Wie groß ist die Wahrscheinlichkeit, dass sich in 50 Paketen 2. Wahl mehr fehlerhafte Platten befinden als in 20 Paketen 3. Wahl?

Sei bino(n, p, [mm] k)=p^k*(1-p)^{n-k}. [/mm]

Sei P2(k Fehler)=bino(50, 0.1, k) also [mm] 0.1^k*0.9^{50-k} [/mm]
und P3(k Fehler)=bino(20, 0.3, k) also [mm] 0.3^k*0.7^{20-k}. [/mm]

Errötend muß ich feststellen, dass ich die Binomialkoeffizieten unterschlagen habe;
ich korrigiere:
Sei bino(n, p, [mm] k)=n!/[k!*(n-k)!]*p^k*(1-p)^{n-k}. [/mm]
Sei P2(k Fehler)=bino(50, 0.1, k) also [mm] 50!/[k!*(50-k)!]*0.1^k*0.9^{50-k} [/mm]
und P3(k Fehler)=bino(20, 0.3, k) also [mm] 20!/[k!*(20-k)!]*0.3^k*0.7^{20-k}. [/mm]

Sei P die gesuchte (Gesamt-)Wahrscheinlichkeit.

Die Anzahl der fehlerhaften Platten in dem einen Paket habe keinen Einfluß auf die Anzahl der fehlerhaften Platten in dem anderen Paket.

Damit wird

P=
P2(1 Fehler)*P3(0 Fehler)+
P2(2 Fehler)*P3(0 Fehler)+P2(2 Fehler)*P3(1 Fehler)+
P2(3 Fehler)*P3(0 Fehler)+P2(3 Fehler)*P3(1 Fehler)+P2(3 Fehler)*P3(2 Fehler)+
P2(4 Fehler)*P3(0 Fehler)+P2(4 Fehler)*P3(1 Fehler)+P2(4 Fehler)*P3(2 Fehler)+P2(4 Fehler)*P3(3 Fehler)+
...
P2(50 Fehler)*P3(0 Fehler)+P2(50 Fehler)*P3(1 Fehler)+P2(50 Fehler)*P3(2 Fehler)+...+P2(50 Fehler)*P3(20 Fehler)

Eine große Summe mit vielen kleinen Summanden!

Geht es einfacher?

Schönen Gruß

Karsten

Bezug
                
Bezug
Wahrscheinlichkeitsberechnung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:55 Di 14.04.2009
Autor: Razorback

Hallo,

vielen Danke für die Antwort.

Die Lösung leuchtet mir ein jedoch sind das nun enorm viele einzelne Summanden, wie bereits erwähnt.
Ich komme aber auch nicht auf eine einfachere Lösung.

Die Aufgabe entstammt einer Übung für das diesjährige Abitur. Ich kann mir nicht vorstellen, das man uns im Abitur solch eine Summe berechnen lassen würde. Über eine Vereinfachung würde ich mich sehr freuen.

Lg Razorback

Bezug
                        
Bezug
Wahrscheinlichkeitsberechnung: Antwort
Status: (Antwort) fertig Status 
Datum: 21:03 Di 14.04.2009
Autor: MathePower

Hallo Razorback,

> Hallo,
>  
> vielen Danke für die Antwort.
>
> Die Lösung leuchtet mir ein jedoch sind das nun enorm viele
> einzelne Summanden, wie bereits erwähnt.
> Ich komme aber auch nicht auf eine einfachere Lösung.
>
> Die Aufgabe entstammt einer Übung für das diesjährige
> Abitur. Ich kann mir nicht vorstellen, das man uns im
> Abitur solch eine Summe berechnen lassen würde. Über eine
> Vereinfachung würde ich mich sehr freuen.


Nach der Formel von karma zu urteilen, läßt sich das wohl so schreiben:

[mm]p=\summe_{k=1}^{20}P2\left(k\right)*\summe_{l=0}^{k-1}P3\left(l\right) + \summe_{k=21}^{50}P2\left(k\right)*\summe_{l=0}^{20}P3\left(l\right)[/mm]

mit

[mm]P2\left(k\right)=\left( \ \bruch{9}{10} \ \right)^{50}*\left( \ \bruch{1}{9} \ \right)^{k}[/mm]

[mm]P3\left(l\right)=\left( \ \bruch{7}{10} \ \right)^{20}*\left( \ \bruch{3}{7} \ \right)^{l}[/mm]


Und das sind dann geometrische Reihen.


>  
> Lg Razorback


Gruß
MathePower

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Wahrscheinlichkeitsrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de