www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Wahrscheinlichkeitstheorie" - Wahrscheinlichkeitsberechnung
Wahrscheinlichkeitsberechnung < Wahrscheinlichkeitstheorie < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Wahrscheinlichkeitstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Wahrscheinlichkeitsberechnung: wie gehts ohne Baumdiagramm?
Status: (Frage) beantwortet Status 
Datum: 22:51 Mo 28.02.2011
Autor: beckstar101

Aufgabe
Auf einem Volksfest kann man mit Bällen auf Scheiben werfen. Ein Spieler treffe mit der Wahrscheinlichkeit 0,3. Die Zufallsgröße X sei die Anzahl der Treffer bei einer Serie von 5 Würfen

Hi Leute, ich weiß nicht wirklich wie ich die Aufgabe ohne Baumdiagramm lösen kann, und das Baumdiagramm wird ja ziehmlich groß es hat ja beim 5. Wurf 16 Äste

Ich habe mir gedacht

einmal treffen:
0.3*0,7*0,7*0,7*0,7
zweimal treffen
0.3*0,3*0,7*0,7*0,7
dreimal treffen
0.3*0,3*0,3*0,7*0,7

aber das geht ja nicht, weil das ereignis ja auch in einer verschiedenen reihenfolge auftreten kann
z.b
0.3*0,7*0,7*0,7*0,7
oder
0.7*0,3*0,7*0,7*0,7
oder
0.7*0,7*0,3*0,7*0,7

Guckt her und jetzt bin ich scho wieder verwirrt Oo
ich checks einfach nicht, und komm nicht von alleine darauf, und in meinen unterlagen finde ich nichts.
Wenn ich den Schritt erstmal habe und dann eine Tabelle
erstelle mit
der Zufallsgröße und der Wahrscheinlichekit kann ich wieder allein den durchschnitt, die Varianz und die Standardabweichung ausrechnung Oo echt blöd dass mir so ein grundlegender Schritt fehlt.. Hoffe ihr könnt mir helfen.

lg Steffen


ps
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt

        
Bezug
Wahrscheinlichkeitsberechnung: Antwort
Status: (Antwort) fertig Status 
Datum: 23:02 Mo 28.02.2011
Autor: drAb

Hallo,

wie du schon geschrieben hast "explodiert" die Tabelle oder die Aufzählung. Desshalb verwende die Binomialkoeffizienten.

Oder gerade die Binomialverteilung. ->> 0/1 Experiment.


Grüsse

Bezug
                
Bezug
Wahrscheinlichkeitsberechnung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 19:14 Di 01.03.2011
Autor: beckstar101

Danke für die Schnelle Antwort, habs inzwischen kapiert ist ja logisch, wenn die wahrscheinlichkeit gleich bleibt, kann man es im tafelwerk nachschauen :D

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Wahrscheinlichkeitstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de