www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Wahrscheinlichkeitsrechnung" - Wahrscheinlichkeitsr. Gameshow
Wahrscheinlichkeitsr. Gameshow < Wahrscheinlichkeit < Stochastik < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Wahrscheinlichkeitsrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Wahrscheinlichkeitsr. Gameshow: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:10 Do 03.12.2009
Autor: kleinerKrieger

Aufgabe
Es ist zwar keine Schulaufgabe, aber mich interessiert es, wie man es ausrechnet.

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.
Wir befinden uns in einer Gameshow. Es gibt zwei Tore, hinter einem steht ein brandneues Auto, hinter dem anderen ein Trostpreis. Hier ist die Wahrscheinlichkeit natürlich 50%, dass man das richtige Tor trifft.
Nun kommt aber noch hinzu, dass ich 10 Versuche habe, um das richtige Tor auszuwählen (das Auto wird nach jeder Runde wieder zufällig hinter eines der Tore hingestellt).
Wie hoch ist die Wahrscheinlichkeit, dass ich einmal das richtige Tor errate? Gebt mir bitte eine Rechnung mit, wäre nett. :)

        
Bezug
Wahrscheinlichkeitsr. Gameshow: Tipp
Status: (Antwort) fertig Status 
Datum: 09:21 Fr 04.12.2009
Autor: informix

Hallo kleinerKrieger und [willkommenmr],

> Es ist zwar keine Schulaufgabe, aber mich interessiert es,
> wie man es ausrechnet.
>  Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.
>  Wir befinden uns in einer Gameshow. Es gibt zwei Tore,
> hinter einem steht ein brandneues Auto, hinter dem anderen
> ein Trostpreis. Hier ist die Wahrscheinlichkeit natürlich
> 50%, dass man das richtige Tor trifft.
>  Nun kommt aber noch hinzu, dass ich 10 Versuche habe, um
> das richtige Tor auszuwählen (das Auto wird nach jeder
> Runde wieder zufällig hinter eines der Tore hingestellt).
>  Wie hoch ist die Wahrscheinlichkeit, dass ich einmal das
> richtige Tor errate? Gebt mir bitte eine Rechnung mit,
> wäre nett. :)

erster Ansatz:
Denk dir einen Wkt-Baum mit den beiden Alternativen: Auto oder kein_Auto, beide mit der Wkt. p=0,5
Was du suchst, ist die Wkt. "nicht kein_Auto bei 10mal raten":
1-P(10 mal kein_Auto) [mm] =1-(\bruch{1}{2})^{10} [/mm]
Hier nimmt man allerdings an, dass nach dem Gewinn des Autos immer noch weiter geraten werden darf.

Aber vermutlich willst/darfst du nach dem Gewinn des Autos nicht weiterspielen, damit vergrößert sich die theoretische Wkt. noch.
Denk mal selbst weiter...

Gruß informix

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Wahrscheinlichkeitsrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de