www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Wahrscheinlichkeitstheorie" - Wahrscheinlichkeitsräume
Wahrscheinlichkeitsräume < Wahrscheinlichkeitstheorie < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Wahrscheinlichkeitstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Wahrscheinlichkeitsräume: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:45 So 26.10.2008
Autor: Manuel-Z

Aufgabe
Eine Münze wird n-mal geworfen. Bei jedem Wurf wird zwischen Kopf oder Zahl unterschieden.

a) Gebe den Wahrscheinlichkeitsraum für die n Würfe an.

Wie groß ist die Wahrscheinlichkeit daß

b) bei den n Würfen mindestens einmal Zahl erscheint?
c) das Ereignis von b) eintritt aber unter den ersten l Würfen keine Zahl ist?
d) bei den n Würfen mindestens zweimal Zahl erscheint?
e) bei den n Würfen genau einmal einmal Zahl erscheint?

Stimmts ???
a) Kopf=0  Zahl=1

[mm] \Omega [/mm] = { [mm] \emptyset,0,1 [/mm] }
[mm] \mathcal{A} [/mm] = { [mm] \emptyset, [/mm] {0} , {1} , {0,1} }

[mm] P(\emptyset) [/mm] = 0
P({0}) = [mm] \bruch{1}{2} [/mm]
P({1}) = [mm] \bruch{1}{2} [/mm]
P({0,1}) = 0

Wie komme ich auf die Wahrscheinlichkeiten?



        
Bezug
Wahrscheinlichkeitsräume: Antwort
Status: (Antwort) fertig Status 
Datum: 10:34 Mo 27.10.2008
Autor: steffenhst

Hallo,

deine Lösung zu a.) wäre richtig, wenn du n Würfe und nicht nur einen Wurf beschrieben hättest. Wie würde also der W-Raum im n-ten Wurf aussehen?

im Einzelnen:

> [mm] \Omega [/mm] = { [mm] \emptyset,0,1 [/mm] }

die leere Menge ist nie Elemnet des Grundraumes, sondern immer nur der sigma-Algebra.

> [mm] \mathcal{A} [/mm] = { [mm] \emptyset, [/mm] {0} , {1} , {0,1} }

Ja, aber wie gesagt für 1 Wurf und nicht n Würfe.

> [mm] P(\emptyset) [/mm] = 0
>  P({0}) = [mm]\bruch{1}{2}[/mm]
>  P({1}) = [mm]\bruch{1}{2}[/mm]
>  P({0,1}) = 0

Wie kommst du auf die letzte Wahrscheinlichkeit. Wörtlich bedeutet das ja: Kopf zu werfen hat eine Wahrscheinlichkeit von 0.5, Zahl auch und die Wahrscheinlichkeit für Kopf oder Zahl ist 0? Sie ist 1, oder?

> Wie komme ich auf die Wahrscheinlichkeiten?

Für 1 Wurf sind sie das. P ist hier also die Gleichverteilung und es bleibt auch die GV im n-ten Wurf. Wenn du den W-Raum hast, wird das Ganze ganz einfach. Also, wie würde der W-Raum für n-Würfe aussehen (vielleicht als Tip: n-Würfe sind ja nichts anderes als n mal 1 Wurf zu machen)?

Grüße, Steffen  

Bezug
                
Bezug
Wahrscheinlichkeitsräume: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:49 So 02.11.2008
Autor: Manuel-Z


> Hallo,
>  
> deine Lösung zu a.) wäre richtig, wenn du n Würfe und nicht
> nur einen Wurf beschrieben hättest. Wie würde also der
> W-Raum im n-ten Wurf aussehen?
>  
> im Einzelnen:
>  
> > [mm]\Omega = { \emptyset,0,1}[/mm]

Dann sollte ich den Raum als ein n-Tupel dessen Elemente aus der Menge Kopf oder Zahl sind darstellen?

>  
> die leere Menge ist nie Elemnet des Grundraumes, sondern
> immer nur der sigma-Algebra.
>
> > [mm]\mathcal{A} = {\emptyset,{0} , {1} , {0,1} }[/mm]
>  
> Ja, aber wie gesagt für 1 Wurf und nicht n Würfe.

Hier dann ähnlich wie beim Raum?
Aber wie sieht es dann bei n Würfen Formal aus?

> > [mm]P(\emptyset)[/mm] = 0
>  >  P({0}) = [mm]\bruch{1}{2}[/mm]
>  >  P({1}) = [mm]\bruch{1}{2}[/mm]
>  >  P({0,1}) = 0
>  

P({0,1}) = 0  
Hier dachte ich an "Kopf und Zahl" und nicht "Kopf oder Zahl".

> Wie kommst du auf die letzte Wahrscheinlichkeit. Wörtlich
> bedeutet das ja: Kopf zu werfen hat eine Wahrscheinlichkeit
> von 0.5, Zahl auch und die Wahrscheinlichkeit für Kopf oder
> Zahl ist 0? Sie ist 1, oder?
>
> > Wie komme ich auf die Wahrscheinlichkeiten?
>  
> Für 1 Wurf sind sie das. P ist hier also die
> Gleichverteilung und es bleibt auch die GV im n-ten Wurf.
> Wenn du den W-Raum hast, wird das Ganze ganz einfach. Also,
> wie würde der W-Raum für n-Würfe aussehen (vielleicht als
> Tip: n-Würfe sind ja nichts anderes als n mal 1 Wurf zu
> machen)?
>  
> Grüße, Steffen  


Bezug
                        
Bezug
Wahrscheinlichkeitsräume: Antwort
Status: (Antwort) fertig Status 
Datum: 16:09 Mo 03.11.2008
Autor: steffenhst

Hallo,

> Dann sollte ich den Raum als ein n-Tupel dessen Elemente
> aus der Menge Kopf oder Zahl sind darstellen?

ja, den Grundraum kann man also darstellen als n-tes kartesisches Produkt des Raumes [mm] \Omega [/mm] = {0,1}, also [mm] \Omega^{n} [/mm] = {0,1} [mm] \times [/mm] {0,1} [mm] \times [/mm] ... [mm] \times [/mm] {0,1}

>  
> > die leere Menge ist nie Elemnet des Grundraumes, sondern
> > immer nur der sigma-Algebra.
> >
> > > [mm]\mathcal{A} = {\emptyset,{0} , {1} , {0,1} }[/mm]
> >  

> > Ja, aber wie gesagt für 1 Wurf und nicht n Würfe.
>
> Hier dann ähnlich wie beim Raum?
>  Aber wie sieht es dann bei n Würfen Formal aus?

nimm doch einfach die n-te Potenz der Potenzmenge von {0,1}, also [mm] (\mathcal{P} ({0,1}))^{n}. [/mm]

> > > [mm]P(\emptyset)[/mm] = 0
>  >  >  P({0}) = [mm]\bruch{1}{2}[/mm]
>  >  >  P({1}) = [mm]\bruch{1}{2}[/mm]
>  >  >  P({0,1}) = 0
>  >  
>
> P({0,1}) = 0  
> Hier dachte ich an "Kopf und Zahl" und nicht "Kopf oder
> Zahl".

das sieht dann aber so aus P({0} [mm] \cap [/mm] {1}) und dann ist die null richtig. So wie du es schreibst, ist das die Wahrscheinlichkeit für den Grundraum selbst also [mm] P(\Omega) [/mm] mit [mm] \Omega [/mm] = {0,1} und die ist nunmal 1.

Grüße, Steffen

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Wahrscheinlichkeitstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de