www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Kombinatorik" - Wahrscheinlichkeitsraum
Wahrscheinlichkeitsraum < Kombinatorik < Stochastik < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Kombinatorik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Wahrscheinlichkeitsraum: Zeige, dass P(AuBuC) = ...
Status: (Frage) beantwortet Status 
Datum: 15:12 Fr 01.03.2019
Autor: bondi

Hallo,
wir sollen zeigen, dass

[mm] $P(A\cup B\cup [/mm] C) = [mm] P(A)+P(B)+P(C)-P(A\cap B)-P(A\cap C)-P(B\cap C)+P(A\cap B\cap [/mm] C)$ gilt.

Für zwei Wahrscheinlichkeiten habe ich das ganz gut mit dem Venn-Diagramm gelöst bekommen.

Ich habs so gemacht:

[mm] $P(A\cup [/mm] B) = [mm] P(A)+P(B)-P(A\cap [/mm] B)$

$P(A)$ kann ich auch so darstellen: [mm] $P(A\setminus [/mm] B)+P(B)$

Das eingesetzt ergibt:

[mm] $P(A\cup [/mm] B) =  [mm] P(A\setminus [/mm] B)+P(B)$
[mm] $P(A\cup [/mm] B) = [mm] P(A)-P(A\cap [/mm] B)+P(B)$

Sortieren:

[mm] $P(A\cup [/mm] B) = [mm] P(A)+P(B)-P(A\cap [/mm] B)$

Jetzt aber sollen wir zeigen, dass

[mm] $P(A\cup B\cup C)=P(A)+P(B)+P(C)-P(A\cap B)-P(A\cap C)-P(B\cap C)+P(A\cap B\cap [/mm] C)$

ist. Mit drei Wahrscheinlichkeiten komme ich noch nicht klar. Reicht es eigentlich, wenn ich ein Element auf andere Weise darstelle?

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.





        
Bezug
Wahrscheinlichkeitsraum: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 15:18 Fr 01.03.2019
Autor: bondi

Ich habe ein paar Fehler in meiner Frage entdeckt. Kann ich das was ich abgeschickt habe nachträglich ändern?

Bezug
                
Bezug
Wahrscheinlichkeitsraum: bearbeiten
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 15:20 Fr 01.03.2019
Autor: Loddar

Hallo bondi,

[willkommenmr] !!

Unterhalb des Artikels sollte einer der Buttons lauten:

[Dateianhang nicht öffentlich]

Mit [4] kannst Du Deine Fragen editieren.


Gruß
Loddar

Dateianhänge:
Anhang Nr. 1 (Typ: PNG) [nicht öffentlich]
Bezug
        
Bezug
Wahrscheinlichkeitsraum: Antwort
Status: (Antwort) fertig Status 
Datum: 17:51 Fr 01.03.2019
Autor: Fulla

Hallo bondi,

ich habe die Formeln in deinem Frage-Artikel so bearbeitet, dass sie richtig dargestellt werden. Klicke auf eine Formel oder sieh dir den Quelltext an, wenn du wissen willst, wie die entsprechenden Befehle lauten.

> Hallo,
> wir sollen zeigen, dass

>

> [mm]P(A\cup B\cup C) = P(A)+P(B)+P(C)-P(A\cap B)-P(A\cap C)-P(B\cap C)+P(A\cap B\cap C)[/mm]
> gilt.

>

> Für zwei Wahrscheinlichkeiten habe ich das ganz gut mit
> dem Venn-Diagramm gelöst bekommen.

>

> Ich habs so gemacht:

>

> [mm]P(A\cup B) = P(A)+P(B)-P(A\cap B)[/mm]

>

> [mm]P(A)[/mm] kann ich auch so darstellen: [mm]P(A\setminus B)+P(B)[/mm]

Hier hast du einen (Tipp-)Fehler gemacht. Links muss [mm]P(A\cup B)[/mm] stehen. Unten hast du es richtig geschrieben.

> Das eingesetzt ergibt:

>

> [mm]P(A\cup B) = P(A\setminus B)+P(B)[/mm]
> [mm]P(A\cup B) = P(A)-P(A\cap B)+P(B)[/mm]

>

> Sortieren:

>

> [mm]P(A\cup B) = P(A)+P(B)-P(A\cap B)[/mm]

>

> Jetzt aber sollen wir zeigen, dass

>

> [mm]P(A\cup B\cup C)=P(A)+P(B)+P(C)-P(A\cap B)-P(A\cap C)-P(B\cap C)+P(A\cap B\cap C)[/mm]

>

> ist. Mit drei Wahrscheinlichkeiten komme ich noch nicht
> klar. Reicht es eigentlich, wenn ich ein Element auf andere
> Weise darstelle?

Wie so oft, hilft hier zunächst eine Skizze, z.B. []diese. Da geht es zwar um Mengen und nicht um Wahrscheinlichkeiten, aber prinzipiell geht es um dasselbe.

[mm]P(A\cup B\cup C)[/mm] wird hier durch die Gesamtfläche der drei Kreise beschrieben.
Mit dem Ansatz [mm]P(A)+P(B)+P(C)[/mm] hast du aber zuviel genommen, da sich die Kreise im Allgemeinen überlappen. Z.B. hast du den linsenförmigen Bereich [mm]P(A\cap B)[/mm] einmal bei [mm]P(A)[/mm] und einmal bei [mm]P(B)[/mm] mitgezählt, den musst du also am Ende einmal abziehen.

Führe diesen Gedankengang mit anderen Bereichen weiter und überlege dir, wie oft dabei der "dreieckige" Bereich [mm]P(A\cap B\cap C)[/mm] dazugezählt und abgezogen wird und korrigiere das entsprechend, so dass jeder Bereich genau einmal addiert wird.


Die Variante mit Mengendifferenzen, die du oben ansprichst, habe ich nicht durchgespielt. Das funktioniert bestimmt auch, wird aber ungleich komplizierter als der von mir beschriebene Weg.

Stör dich nicht daran, dass in dem Beweis nicht jeder Schritt mit einer Formel "belegt" wird. Es ist völlig legitim, Beweisargumente "mit Worten" zu beschreiben (solange die Formulierung nicht schwammig ist).


Lieben Gruß,
Fulla

Bezug
        
Bezug
Wahrscheinlichkeitsraum: Antwort
Status: (Antwort) fertig Status 
Datum: 19:30 Sa 02.03.2019
Autor: Gonozal_IX

Hiho,

> Für zwei Wahrscheinlichkeiten habe ich das ganz gut […] gelöst bekommen.

mehr brauchst du doch gar nicht!
Es ist doch $P(A [mm] \cup [/mm] B [mm] \cup [/mm] C) = P(A [mm] \cup [/mm] D)$ mit $D = B [mm] \cup [/mm] C$.

Nun hast du nur noch zwei Mengen und wendest dein Wissen an.
Dann ersetzt du D wieder durch $B [mm] \cup [/mm] C$ und machst weiter...

Gruß,
Gono


Bezug
        
Bezug
Wahrscheinlichkeitsraum: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 08:33 Di 05.03.2019
Autor: bondi

Hi.

Nur um sicher zu sein, dass ich das richtig verstanden habe:

[mm] $P(A\cup B\cup [/mm] C)$

ist das Gleiche wie

[mm] $P(A\cup B)\cup [/mm] P(B [mm] \cup [/mm] C)$

Nachweis Teil 1:

[mm] $P(A\cup [/mm] B) = P(A) + P(B) - [mm] P(A\cap [/mm] B)$


$P(A) = [mm] P(A\setminus [/mm] B) + [mm] P(A\cap [/mm] B)$

[mm] $P(A\setminus [/mm] B) = P(A) - [mm] P(A\cup [/mm] B)$


[mm] $P(B\setminus [/mm] A) = P(B) - [mm] P(A\cup [/mm] B)$

$P(B) = [mm] P(B\setminus [/mm] A) + [mm] P(A\cap [/mm] B)$


Daraus folgt:

[mm] $P(A\cup [/mm] B) = [mm] P(A\setminus [/mm] B) + [mm] P(A\cap [/mm] B) + [mm] P(B\setminus [/mm] A) + [mm] P(A\cap [/mm] B) - [mm] P(A\cap [/mm] B) = [mm] P(A\setminus [/mm] B) + [mm] P(A\cap [/mm] B) + [mm] P(B\setminus [/mm] A)$


Nachweis Teil 2:

[mm] $P(B\cup [/mm] C) = P(B) + P(C) - [mm] P(B\cap [/mm] C)$


$P(B) = [mm] P(B\setminus [/mm] C) + [mm] P(B\cap [/mm] B)$

[mm] $P(B\setminus [/mm] C) = P(B) - [mm] P(B\cup [/mm] C)$


$P(C) = [mm] P(C\setminus [/mm] B) + [mm] P(B\cap [/mm] C)$

[mm] $P(C\setminus [/mm] B) = P(C) - [mm] P(B\cup [/mm] C)$


Daraus folgt:

[mm] $P(B\cup [/mm] C) = [mm] P(B\setminus [/mm] C) + [mm] P(B\cap [/mm] C) + [mm] P(C\setminus [/mm] B) + [mm] P(B\cap [/mm] C) - [mm] P(B\cap [/mm] C) =  [mm] P(B\setminus [/mm] C) + [mm] P(B\cap [/mm] C) + [mm] P(C\setminus [/mm] B)$


Somit ist

[mm] $P(A\cup [/mm] B) [mm] \cup P(B\cup [/mm] C) = [mm] P(A\cup B\cup [/mm] C)$

Für ein Feedback bin ich dankbar.

Bezug
                
Bezug
Wahrscheinlichkeitsraum: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 09:06 Di 05.03.2019
Autor: fred97


> Hi.
>  
> Nur um sicher zu sein, dass ich das richtig verstanden
> habe:

Ich glaube, dass Du in der falschen Diskussion gelandet bist. Das was Du unten schreibst hat mit der Frage nach den Ehepaaren nix zu tun.

>  
> [mm]P(A\cup B\cup C)[/mm]
>  
> ist das Gleiche wie
>  
> [mm]P(A\cup B)\cup P(B \cup C)[/mm]
>
> Nachweis Teil 1:
>  
> [mm]P(A\cup B) = P(A) + P(B) - P(A\cap B)[/mm]
>  
>
> [mm]P(A) = P(A\setminus B) + P(A\cap B)[/mm]
>  
> [mm]P(A\setminus B) = P(A) - P(A\cup B)[/mm]
>  
>
> [mm]P(B\setminus A) = P(B) - P(A\cup B)[/mm]
>  
> [mm]P(B) = P(B\setminus A) + P(A\cap B)[/mm]
>  
>
> Daraus folgt:
>  
> [mm]P(A\cup B) = P(A\setminus B) + P(A\cap B) + P(B\setminus A) + P(A\cap B) - P(A\cap B) = P(A\setminus B) + P(A\cap B) + P(B\setminus A)[/mm]
>  
>
> Nachweis Teil 2:
>  
> [mm]P(B\cup C) = P(B) + P(C) - P(B\cap C)[/mm]
>  
>
> [mm]P(B) = P(B\setminus C) + P(B\cap B)[/mm]
>  
> [mm]P(B\setminus C) = P(B) - P(B\cup C)[/mm]
>  
>
> [mm]P(C) = P(C\setminus B) + P(B\cap C)[/mm]
>  
> [mm]P(C\setminus B) = P(C) - P(B\cup C)[/mm]
>  
>
> Daraus folgt:
>  
> [mm]P(B\cup C) = P(B\setminus C) + P(B\cap C) + P(C\setminus B) + P(B\cap C) - P(B\cap C) = P(B\setminus C) + P(B\cap C) + P(C\setminus B)[/mm]
>  
>
> Somit ist
>
> [mm]P(A\cup B) \cup P(B\cup C) = P(A\cup B\cup C)[/mm]
>  
> Für ein Feedback bin ich dankbar.


Bezug
                        
Bezug
Wahrscheinlichkeitsraum: verschoben
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 13:54 Di 05.03.2019
Autor: Loddar

Hallo!


Ich habe die Frage mal in den vermeintlich korrekten Thread verschoben.


Gruß
Loddar

Bezug
                
Bezug
Wahrscheinlichkeitsraum: Antwort
Status: (Antwort) fertig Status 
Datum: 07:30 Do 07.03.2019
Autor: Gonozal_IX

Hiho,

> Hi.
>  
> Nur um sicher zu sein, dass ich das richtig verstanden
> habe:
>  
> [mm]P(A\cup B\cup C)[/mm]
>  
> ist das Gleiche wie
>  
> [mm]P(A\cup B)\cup P(B \cup C)[/mm]

Der zweite Ausdruck ist doch Unfug, wie willst du zwei reelle Zahlen vereinigen?

Du wolltest $P(A [mm] \cup [/mm] B [mm] \cup [/mm] C)$ berechnen.
Nun war mein Hinweis: Setze $D := B [mm] \cup [/mm] C$, dann steht da:
$P(A [mm] \cup [/mm] B [mm] \cup [/mm] C) = P(A [mm] \cup [/mm] D)$

Da hat sich gar nichts geändert, einzig dass du jetzt vermeindlich wieder nur zwei Mengen vereinigst und damit deine bekannte Regel anwenden kannst, also:

[mm] $=\blue{P(A)} [/mm] + [mm] \red{P(D)} [/mm] - [mm] \green{P(A\cap D)}$ [/mm]

Setzen wir nun D wieder ein, erhalten wir:

[mm] $=\blue{P(A)} [/mm] + [mm] \red{P(B \cup C)} [/mm] - [mm] \green{P(A \cap (B \cup C))}$ [/mm]

Anwenden der Morganschen Regel und deiner Rechenregel für zwei Mengen ergibt:

[mm] $=\blue{P(A)} [/mm] + [mm] \red{P(B) + P(C) - P(B\cap C)} [/mm] - [mm] \green{P((A \cap B) \cup (A \cap C))}$ [/mm]

Das vorne sieht ja schon gut aus und im letzten Ausdruck steht eigentlich auch nur wieder die Vereinigung von zwei Mengen, das sehen wir besser, wenn wir $E = (A [mm] \cap [/mm] B)$ und $F=(A [mm] \cap [/mm] C)$ setzen, das ergibt nämlich:

$=P(A) + P(B) + P(C) - P(B [mm] \cap [/mm] C) - [mm] \green{P(E \cup F)}$ [/mm]

und wieder wenden wir die bekannte Regel für zwei Mengen an und erhalten:

$=P(A) + P(B) + P(C) - P(B [mm] \cap [/mm] C) - [mm] \green{\left(P(E) + P(F) - P(E \cap F)\right)}$ [/mm]

Setzen wir wieder die Ausdrücke von E und F ein, erhalten wir:

$=P(A) + P(B) + P(C) - P(B [mm] \cap [/mm] C) - [mm] \green{\left(P(A \cap B) + P(A \cap C) - P(A \cap B \cap A \cap C)\right)}$ [/mm]

Klammer auflösen, umsortieren und beachten, dass zweimal mit der selben Menge schneiden egal ist, gibt:

$=P(A) + P(B) + P(C) - [mm] \green{P(A\cap B) - P(A\cap C)} [/mm] - P(B [mm] \cap [/mm] C) + [mm] \green{P(A \cap B \cap C)}$ [/mm]

Gruß,
Gono





Bezug
                        
Bezug
Wahrscheinlichkeitsraum: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 10:32 Do 07.03.2019
Autor: bondi

Hi Gono,
vielen Dank für deine farbenfrohe Erklärung. Hat mir sehr geholfen.

Viele Grüße,
bondi

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Kombinatorik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de