www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Stochastik" - Wahrscheinlichkeitsraum
Wahrscheinlichkeitsraum < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Wahrscheinlichkeitsraum: Tipps
Status: (Frage) beantwortet Status 
Datum: 17:31 Mo 14.11.2011
Autor: Mathegirl

Aufgabe
Ein Bildschirm habe mit einer Wahrscheinlichkeit proportional zu 1/k! genau k defekte Pixel,
k = 0,1,2,.. (Die Pixelzahl des Bildschirms sei so gro, dass wir sie fur diese Aufgabe als
unendlich annehmen konnen). Bestimmen Sie den zugehörigen Wahrscheinlichkeitsraum und
die Wahrscheinlichkeit, dass kein Pixel defekt ist, sowie die Wahrscheinlichkeit, dass hochstens
2 Pixel defekt sind.

Kann mir jemand einen Tipp geben wie ich diese Aufgabe lösen kann?

Wie gebe ich den wahrscheinlichkeitsraum an?

Ich habe echt keine Ahnung bei dieser Aufgabe!


Mathegirl

        
Bezug
Wahrscheinlichkeitsraum: Antwort
Status: (Antwort) fertig Status 
Datum: 17:47 Mo 14.11.2011
Autor: kamaleonti

Hallo,
> Ein Bildschirm habe mit einer Wahrscheinlichkeit
> proportional zu 1/k! genau k defekte Pixel,
>  k = 0,1,2,.. (Die Pixelzahl des Bildschirms sei so gro,
> dass wir sie fur diese Aufgabe als
>  unendlich annehmen konnen). Bestimmen Sie den
> zugehörigen Wahrscheinlichkeitsraum und
>  die Wahrscheinlichkeit, dass kein Pixel defekt ist, sowie
> die Wahrscheinlichkeit, dass hochstens 2 Pixel defekt sind.

Seien die Eregnisse [mm] A_k=\{\mbox{k Pixel sind defekt}\} [/mm] für [mm] k\geq0. [/mm] Dann bilden die [mm] A_k [/mm] eine Partition von [mm] \Omega, [/mm] insbesondere gilt

      [mm] 1=\sum_{k=0}^\infty P(A_k). [/mm]

Außerdem gilt [mm] P(A_k)=\frac{c}{k!} [/mm] für alle [mm] k\geq0 [/mm] und ein c>0 (Proportionalitätseigenschaft). Berechne damit erst einmal das c.

Wenn dir damit die WSKs der [mm] A_k [/mm] bekannt sind, ist der Rest einfach.

LG

Bezug
                
Bezug
Wahrscheinlichkeitsraum: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:54 Mo 14.11.2011
Autor: Mathegirl

ich hab keine Ahnung wie ich das c berechnen kann :(
Ich hab keine Ahnung wie ich das berechnen muss und wieso aus der 1 jetzt einfach ein c geworden ist. Wegen der proportionalität, ich weiß, aber warum genau das versteh ich nicht.

mathegirl

Bezug
                        
Bezug
Wahrscheinlichkeitsraum: Antwort
Status: (Antwort) fertig Status 
Datum: 20:11 Mo 14.11.2011
Autor: kamaleonti


> ich hab keine Ahnung wie ich das c berechnen kann :(
>  Ich hab keine Ahnung wie ich das berechnen muss und wieso
> aus der 1 jetzt einfach ein c geworden ist. Wegen der
> proportionalität, ich weiß, aber warum genau das versteh ich nicht.

Die Summe der Wahrscheinlichkeiten der Elementarereignisse [mm] A_k [/mm] (diese bilden die Basismenge [mm] \Omega) [/mm] ist 1, sonst wäre es kein Wahrscheinlichkeitsmaß (schau in deinen Definitionen nach).

Nun rechne aus [mm] \sum_{k\geq0}P(A_k)=\sum_{k\geq0}\frac{c}{k!}=\ldots... [/mm]

Denk an die Reihendarstellung der Exponentialfunktion. Wie musst du c wählen, damit 1 rauskommt?

LG


Bezug
                                
Bezug
Wahrscheinlichkeitsraum: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:19 Mo 14.11.2011
Autor: Mathegirl

ich habe wirklich keine Ahnung!!!
c=1?

ich weiß es nicht...sorry aber ich verstehe es echt nicht!

mathegirl

Bezug
                                        
Bezug
Wahrscheinlichkeitsraum: Antwort
Status: (Antwort) fertig Status 
Datum: 20:23 Mo 14.11.2011
Autor: Teufel

Hi!

Es gilt doch

[mm] \summe_{k=0}^{\infty}\frac{c}{k!}=c*\summe_{k=0}^{\infty}\frac{1}{k!}=c*e [/mm]

Nun suchst du ein c, sodass das =1 wird.


Bezug
                                                
Bezug
Wahrscheinlichkeitsraum: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:28 Mo 14.11.2011
Autor: Mathegirl

ich weiß nur, dass c wahrscheinlich zwischen 0 und 1 liegen muss aber wie man das bestimmt? keine ahnung

Und ich weiß auch nicht wie ich den wahrscheinlichkeitsraum angeben kann.


MfG
mathegirl



Bezug
                                                        
Bezug
Wahrscheinlichkeitsraum: Antwort
Status: (Antwort) fertig Status 
Datum: 20:44 Mo 14.11.2011
Autor: Teufel

Also erst einmal: Meine letzte Antwort war fehlerhaft, kamaleonti hat mich darauf hingewiesen. Hab sie geändert!

Also du suchst nun ein c, sodass c*e=1 gilt. Nun stell man nach c um. ;)

Für den Wahrscheinlichkeitsraum musst du die Grundmenge (Ergebnismenge) angeben. Das ist die Menge, in der alle Ergebnisse liegen. Was ist das in deinem Fall?

Und dann brauchst du noch das Wahrscheinlichkeitsmaß, was du eben ausgerechnet hast.




Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de