www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Kombinatorik" - Wahrscheinlichkeitsrechnung
Wahrscheinlichkeitsrechnung < Kombinatorik < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Kombinatorik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Wahrscheinlichkeitsrechnung: multiplikativ,hypergeometrisch
Status: (Frage) überfällig Status 
Datum: 13:39 Sa 11.11.2006
Autor: sunshinenight

Aufgabe
Es gibt insgesamt 49 verschiedene Güterwagen-Bauarten, davon 6 zweiachsige (wovon die Hälfte leer ist) und 43 vierachsige.

Stellt man aus den 49 Wagenbauarten Gruppen zu 10 wagen zusammen, wird mit welcher Wahrscheinlichkeit genau ein einziger leerer zweiachsiger Wagen zwischen ansonsten vierachsigen oder beladenen zweiachsigen Wagen eingestellt sein?
(rechnen sie wieder mit diskreter Verteilung gegen)

Habe die Aufgabe zunächst hypergeometrisch gelöst mit folgenden Werten:
M=3 (leere zweiachsige Wagen)
k=1 (einer ist gesucht)
N=49 (Wagen insgesamt)
n=10

[mm] \bruch{\vektor{3\\1}*\vektor{46\\9}}{\vektor{49\\10}}*\bruch{8}{10} [/mm]
=0,3218

Wie würde man das jetzt multiplikativ rechnen? Es kommt ja da gewissermaßen auf die Reihenfolge an, da ich ja ohne Zurücklegen die Wagen zusammenstelle. Es ist ja von Bedeutung, ob ich [mm] \bruch{3}{48} [/mm] oder [mm] \bruch{3}{47} [/mm] nehme, um mal ein Beispiel zu nennen.

Wäre super, wenn mir da jemand weiterhelfen könnte.

mfg sunshinenight

        
Bezug
Wahrscheinlichkeitsrechnung: Rueckfrage
Status: (Frage) beantwortet Status 
Datum: 14:04 Sa 11.11.2006
Autor: luis52


>  
> [mm]\bruch{\vektor{3\\1}*\vektor{46\\9}}{\vektor{49\\10}}*\bruch{8}{10}[/mm]
>  =0,3218
>  

Woher kommt denn der Faktor 8/10? Bis auf den ist m.E. das Ergebnis korrekt,
und man erhaelt 0.4022.

> Wie würde man das jetzt multiplikativ rechnen?

Die Frage verstehe ich leider nicht.

Bezug
                
Bezug
Wahrscheinlichkeitsrechnung: Antwort
Status: (Antwort) fertig Status 
Datum: 14:23 Sa 11.11.2006
Autor: sunshinenight

Der Faktor [mm] \bruch{8}{10} [/mm] resultiert daraus, dass der gesuchte Wagen zwischen ansonsten vierachsigen oder beladenen zweiachsigen eingestellt werden soll.
Das heisst, dass er weder am Anfang, noch am Ende stehen darf. Also bleiben für den Wagen nur 8, der 10 möglichen Stellen übrig.

Mit multiplikativ meine ich, dass man ja bei unabhängigen Ereignissen, die Wahrscheinlichkeit durch Multiplikation der Einzelwahrscheinlichkeiten erhält. Weiss jetzt nicht, ob das in dem Falle so geht. Jedenfalls sollten wir mit der hypergeometrischen gegenrechnen, daher muss es noch einen anderen Weg geben, ohne eine diskrete Verteilung (hypergeometrisch ist das ja) zu nutzen.

mfg

Bezug
                        
Bezug
Wahrscheinlichkeitsrechnung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 15:09 Sa 11.11.2006
Autor: luis52


Ah ja, verstehe. Aber muesste der Faktor nicht 9/10 lauten? 2 Wagen haben einen Zwischenraum, 3 Wagen 2, ...

Ein "multiplikatives Argument" koennte so lauten: Es gibt [mm] ${46\choose 9}$ [/mm]
Moeglichkeiten sonstige Wagen auszuwaehlen, die auf $9!$ Weisen
angeordnet werden koennen. In jede Anordnung kann jeder der drei Zweiachser an
neun Zwischenraeume gestellt werden. Damit gibt es
$3 [mm] \times [/mm] 9 [mm] {46\choose 9} \times [/mm] 9!$ 10-Anordnungen mit den gewuenschten
Eigenschaften. Da es [mm] ${49\choose 10}$ [/mm] Moeglichkeiten  gibt, insgesamt 10
Wagen auszuwaehlen und jede dieser Auswahl auf 10! Weisen angeordnet werden
kann, folgt das Ergebnis auch so.


Bezug
        
Bezug
Wahrscheinlichkeitsrechnung: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 14:20 So 19.11.2006
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Kombinatorik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de