www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Wahrscheinlichkeitsrechnung" - Wahrscheinlichkeitsrechnung
Wahrscheinlichkeitsrechnung < Wahrscheinlichkeit < Stochastik < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Wahrscheinlichkeitsrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Wahrscheinlichkeitsrechnung: Hilfe und Korrektur
Status: (Frage) beantwortet Status 
Datum: 16:17 Mi 11.01.2012
Autor: Ronjaaa

Aufgabe
1. Bei einer Wählerbefragung werden zufällig Passanten auf dem Stadtplatz befragt.
Die Partei X kann mit einem Anteil von p = 0,25 = 25% rechnen. Berechne die W. (mit Ansatz):

a) A: Genau 1 X-Wähler unter 6 Passanten
b) B: Der 6. Passant ist der 1. X-Wähler
c) C: Der 6. Passant ist der 3. X-Wähler
d) D: Frühestens der 6. Passant ist der 1. X-Wähler
e) E: Spätestens der 6. Passant ist der 1. X-Wähler

2. Nun werden n=20 Passanten befragt (vgl.1.)
a) A: Mindestens 3 und höchstens 7 X-Wähler
b) B: Mehr X-Wähler als erwartet

Hallo,

ich hoffe, mir kann jemand mit meiner Mathehausaufgabe helfen. Ich bin um jede Hilfe wirklich mehr als dankbar.
Bei der ersten Aufgabe habe ich noch wenigstens ein paar Ergebnisse rausbekommen, aber ich weiß natürlich nicht, ob sie auch stimmen.

1. a) : [mm] \vektor{6 \\ 1} [/mm] * 0,25 [mm] *0,75^5 [/mm] = 35,6%
b) [mm] \vektor{5 \\ 0} [/mm] * [mm] 0,75^5 [/mm] * 0,25 = 5,9%
c) [mm] \vektor{5 \\ 2} [/mm] *0,25³ * 0,75² * 0,25 = 8,8%
[mm] d)0,75^5 [/mm] = 23,7%
e) [mm] 1-0,25^6 [/mm] = 99,97%

Vielleicht könnte mir hier kurz jemand sagen, ob meine Rechenwege stimmen.

Und bei 2. konnte ich nur bei b) den Erwartungswert [mm] \mu [/mm] = 20*0,25 = 5 ausrechnen und erkennen, dass man eine Ungleichung rechnen muss.

Vielleicht könnte mir hier jemand sagen, wie ich das denn zu rechnen habe.

Schon mal danke im Voraus.
LG Ronjaaa

        
Bezug
Wahrscheinlichkeitsrechnung: Antwort
Status: (Antwort) fertig Status 
Datum: 16:42 Mi 11.01.2012
Autor: Blech

Hi,

> c) $ [mm] \vektor{5 \\ 2} [/mm] $ *0,25³ * 0,75² * 0,25 = 8,8%

von den ersten 5 müssen 2 X-Wähler sein, also

[mm] ${5\choose 2}*0.25^2*0.75^3*0.25$ [/mm]



zu 2.:

Das ganze (d.h. die Summe der X-Wähler) ist ja binomialverteilt und für 2. brauchst Du die Verteilungsfunktion bzw. ihre Werte. Die kriegst Du vom Computer oder von Tabellen.


ciao
Stefan

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Wahrscheinlichkeitsrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de