www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Stochastik" - Wahrscheinlichkeitsrechnung
Wahrscheinlichkeitsrechnung < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Wahrscheinlichkeitsrechnung: Frage
Status: (Frage) beantwortet Status 
Datum: 09:58 Fr 19.08.2005
Autor: Skydiver

Hallo.

Hab mal wieder ein Beispiel bei dem ich nicht weiter weiß:

6 idente Maschinen bestehen aus je 5 Modulen, die mit gleicher Wahrscheinlichkeit 1/10 bei einer Überprüfung ausgetauscht werden müssen. Von jedem Modul ist ein Ersatzmodul auf Lager. Wie groß ist die Wahrscheinlichkeit, dass dieser Bestand bei einer Überprüfung ausreicht.
als Hinweis ist noch angegeben: berechnen sie die Wahrscheinlichkeit für mindestens 2 gleiche auszutauschende Module über die Komplementärwahrscheinlichkeit, d.h. die Wahrscheinlichkeit, dass keine zwei auszutauschenden Module gleich sind.

Lösung: 21/601;

also hier hab ich keine Ahnung wie ich vorgehen soll und bin für jeden Tip dankbar.
mfg.

        
Bezug
Wahrscheinlichkeitsrechnung: Rückfrage
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 10:35 Fr 19.08.2005
Autor: Julius

Hallo Skydiver!

Bist du dir sicher mit der Lösung? Ich bekomme nämlich was anderes raus. Woher hast du die Aufgabe und die Lösung?

(Vielleicht habe ich die Aufgabe ja auch falsch verstanden. Mich wundert nur der Nenner (601), denn dies ist eine Primzahl und ich sehe wirklich nicht, wo die herkommen könnte... [keineahnung])

Viele Grüße
Julius

Bezug
                
Bezug
Wahrscheinlichkeitsrechnung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 10:57 Fr 19.08.2005
Autor: Skydiver

Hallo.

Die Angabe stammt von einem Übungsblatt, aus meiner Mathematik Übungsgruppe und auf diesem Blatt sind die Lösungen auch immer dabei.
Jedoch hast du recht, dass mit dem Nenner ist mir auch schon etwas komisch vorgekommen und es wäre auch nicht die erste Lösung die nicht richtig ist, Tippfehler sind doch schon öfters vorgekommen.

mfg.



Bezug
        
Bezug
Wahrscheinlichkeitsrechnung: Antwort
Status: (Antwort) fertig Status 
Datum: 11:22 Fr 19.08.2005
Autor: Julius

Hallo!

Also, ich schreibe mal auf, so wie ich es verstanden habe.

Es sei für $i=1,2,3,4,5$ [mm] $X_i$ [/mm] die Anzahl der Maschinen, in denen das $i$-te Modul ausfällt. Dann gilt:

[mm] $P(X_i \le [/mm] 1) = [mm] P(X_1 \le [/mm] 1) =  [mm] \left( \frac{9}{10} \right)^6 [/mm] + 6 [mm] \cdot \frac{1}{10} \cdot \left(\frac{9}{10}\right)^5$. [/mm]

Dann ist die Wahrscheinlichkeit, dass der Bestand für die Überprüfung ausreicht, gleich

$P [mm] \left( \bigcap\limits_{i=1}^5 \{X_i \le 1\} \right) [/mm] = [mm] \prod\limits_{i=1}^5 P(X_i \le [/mm] 1) = [mm] P(X_1 \le 1)^5$. [/mm]

Oder habe ich die Aufgabe komplett falsch verstanden? (Das passiert mir schon mal bei Aufgaben, wo es um Technik, Maschinen, Stromflüsse und ähnlich uninteressantes Zeugs geht. [lol])

Viele Grüße
Julius

Bezug
                
Bezug
Wahrscheinlichkeitsrechnung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:32 Fr 19.08.2005
Autor: Skydiver

Also berechnest du hierbei zuerst die Binomialverteilung dafür, dass die Anzahl der Maschinen in denen das i-te Modul ausfällt kleiner gleich 1 ist stellvertretend mit Hilfe des ersten Moduls und multipliziert anschließend die Wahrscheinlichkeit für jedes einzelne Modul, was ja die selbe ist wie diejenige für das Erste.
Hab ich das so in etwa richtig verstanden??
Besten Dank!
mfg.

Bezug
                        
Bezug
Wahrscheinlichkeitsrechnung: Antwort
Status: (Antwort) fertig Status 
Datum: 14:28 Fr 19.08.2005
Autor: Julius

Hallo Skydiver!

> Also berechnest du hierbei zuerst die Binomialverteilung
> dafür, dass die Anzahl der Maschinen in denen das i-te
> Modul ausfällt kleiner gleich 1 ist

...kleiner als 2!

> stellvertretend mit
> Hilfe des ersten Moduls und multipliziert anschließend die
> Wahrscheinlichkeit für jedes einzelne Modul, was ja die
> selbe ist wie diejenige für das Erste.
>  Hab ich das so in etwa richtig verstanden??

[ok]

Viele Grüße
Julius


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de