www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Wahrscheinlichkeitstheorie" - Wahrscheinlichkeitstheorie
Wahrscheinlichkeitstheorie < Wahrscheinlichkeitstheorie < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Wahrscheinlichkeitstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Wahrscheinlichkeitstheorie: Aufgabe
Status: (Frage) beantwortet Status 
Datum: 23:01 Mo 19.06.2006
Autor: Aeryn

Aufgabe
Ein Abteilungsleiter möchte, dass jede Woche einer seiner 4 Mitarbeiter einen Berich verfasst und ein zweiter ihn auf Fehler durchliest. Wie viele Wochen wird es mindestens dauern, bis jeder der 4 Mitarbeiter einen Bericht verfasst und von jedem seiner Kollegen einen Bericht auf Fehler gelesen hat?

Servus und hallo!
Mit freuden sehe ich dem Ende des Semesters entgegen, dennoch hätt ich noch hilfe nötig. Ich hoffe  jemand kann mir helfen, bitttteeee! ;)))
Also in der Lösung stehen 12 Wochen nur wie berechne ich das?

Ich würde mal so anfangen. Möglichkeiten:
omega = {(1,2), (1,3), (1,4), (2,1), (2,3), (2,4), (3,1), (3,2), (3,4), (4,1), (4,2), (4,3)} = 12 Möglichkeiten, wars das dann schon???? Wär ja zu einfach oder?
Lg Aeryn.

        
Bezug
Wahrscheinlichkeitstheorie: ist richtig
Status: (Antwort) fertig Status 
Datum: 09:43 Di 20.06.2006
Autor: DirkG

Keine Scheu vor einfachen Lösungen. ;-)

Natürlich musst du nicht alle aufzählen, du hättest das auch über Variationen ohne Wiederholung von 2 aus 4 Elementen lösen können: [mm] $\frac{4!}{(4-2)!}=\frac{24}{2}=12$ [/mm]

Bezug
        
Bezug
Wahrscheinlichkeitstheorie: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 10:05 Di 20.06.2006
Autor: kretschmer

Hallo,

also allgemeiner wäre, um das was Dirk schon gesagt hat zu vervollständigen, die Sache folgendermaßen:

Sei [mm] $V_n^k$ [/mm] die Anzahl der Möglichkeiten aus $n$ verschiedenen Elementen $k$ unter Beachtung der Reihenfolge auszuwählen, dann gilt:
[mm] $V_n^k=k!\vektor{n\\k}=\frac{n!}{(n-k)!}$ [/mm]

--
Gruß
Matthias

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Wahrscheinlichkeitstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de