www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Wahrscheinlichkeitstheorie" - Wahrscheinlicht P(A u B^c)
Wahrscheinlicht P(A u B^c) < Wahrscheinlichkeitstheorie < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Wahrscheinlichkeitstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Wahrscheinlicht P(A u B^c): Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:40 Di 19.04.2011
Autor: NightmareVirus

Aufgabe
[mm]P(A) = \frac{3}{5}, \; P(B) = \frac{3}{10}, \; P(A \cap B) \;=\; \frac{1}{10}[/mm]

Berechne [mm]P(A\cup B^c)[/mm]


Eigentlich sollte das ja nicht schwer sein, mir fällt nur leider keine geeignete Termumformung ein. :(

Ich habe das ganze mal aufgemalt und bin zu dem Schluss gekommen, dass
[mm]P(A\cup B^c) = P(B^c) + P(A\cap B)[/mm]

gilt.
------------
Meine Ansätze:

[mm]P(A\cup B^c) \;=\; P(A) + P(B^c) - P(A\cap B^c)[/mm]
Hier ist nun das Problem [mm]P(A\cap B^c)[/mm] zu berechnen.

Mit de-morgan:
[mm]P(A\cup B^c) \;=\; P((A^c)^c\cup B^c) \;=\; P((A^c \cap B)^c) \;=\; 1 - P(A^c \cap B)\;\stackrel{(1)}{=}\; 1 - (P(B) - P(A \cap B)) \;=\; 1 - P(B) + P(A \cap B)[/mm]
Das entspricht dem Ergebnis welches ich durch Zeichnen erreicht habe, jedoch ist der Umformungsschritt (1) auch nur durch Anschauung entstanden und nicht begründet auf irgendeinem Gesetz. Spätestens bei 4 Mengen würde eine solche Anschauung ja versagen. Daher wäre es ganz gut, wenn jemand an der Stelle eine passende Formel nennen könnte, oder einfacher: einen dirketeren unkomplizierten Lösungsweg kennt ;)





        
Bezug
Wahrscheinlicht P(A u B^c): Antwort
Status: (Antwort) fertig Status 
Datum: 08:33 Mi 20.04.2011
Autor: luis52

Moin,

ich empfehle bei derartigen Fragestellungen die Verwendung einer
Wahrscheinlichkeitstafel. Siehe z.B.

http://www.unimatheforum.de/read?t=324705

vg Luis




Bezug
        
Bezug
Wahrscheinlicht P(A u B^c): Antwort
Status: (Antwort) fertig Status 
Datum: 09:00 Mi 20.04.2011
Autor: Marcel

Hallo,

> [mm]P(A) = \frac{3}{5}, \; P(B) = \frac{3}{10}, \; P(A \cap B) \;=\; \frac{1}{10}[/mm]
>  
> Berechne [mm]P(A\cup B^c)[/mm]
>  
> Eigentlich sollte das ja nicht schwer sein, mir fällt nur
> leider keine geeignete Termumformung ein. :(
>  
> Ich habe das ganze mal aufgemalt und bin zu dem Schluss
> gekommen, dass
>  [mm]P(A\cup B^c) = P(B^c) + P(A\cap B)[/mm]
>  
> gilt.
> ------------
>  Meine Ansätze:
>  
> [mm]P(A\cup B^c) \;=\; P(A) + P(B^c) - P(A\cap B^c)[/mm]
>  Hier ist
> nun das Problem [mm]P(A\cap B^c)[/mm] zu berechnen.
>  
> Mit de-morgan:
>  [mm]P(A\cup B^c) \;=\; P((A^c)^c\cup B^c) \;=\; P((A^c \cap B)^c) \;=\; 1 - P(A^c \cap B)\;\stackrel{(1)}{=}\; 1 - (P(B) - P(A \cap B)) \;=\; 1 - P(B) + P(A \cap B)[/mm]
>  
> Das entspricht dem Ergebnis welches ich durch Zeichnen
> erreicht habe, jedoch ist der Umformungsschritt (1) auch
> nur durch Anschauung entstanden und nicht begründet auf
> irgendeinem Gesetz. Spätestens bei 4 Mengen würde eine
> solche Anschauung ja versagen. Daher wäre es ganz gut,
> wenn jemand an der Stelle eine passende Formel nennen
> könnte, oder einfacher: einen dirketeren unkomplizierten
> Lösungsweg kennt ;)

der Umformungsschritt (1) ist begründbar:
Wegen $B=(B [mm] \cap [/mm] A) [mm] \cup [/mm] (B [mm] \cap A^c)\,,$ [/mm] unter Beachtung, dass das eine disjunkte Vereinigung ist, folgt
$$P(B )=P(B [mm] \cap [/mm] A)+P(B [mm] \cap A^c)\,$$ [/mm]
was äquivalent zu
$$P(B [mm] \cap A^c)=P(B)-P(B \cap [/mm] A) [mm] \underset{hier}{=}3/10-1/10=2/10=1/5$$ [/mm]
ist.

Ergänzung:
Dass $B=(B [mm] \cap [/mm] A) [mm] \cup [/mm] (B [mm] \cap A^c)$ [/mm] gilt, ist sehr einfach mengentheoretisch beweisbar:
Weil sowohl $B [mm] \cap [/mm] A [mm] \subseteq [/mm] B$ als auch $B [mm] \cap A^c \subseteq [/mm] B$ gilt, ist auch die Vereinigung $(B [mm] \cap [/mm] A) [mm] \cup [/mm] (B [mm] \cap A^c)$ [/mm] eine (nicht notwendig echte) Teilmenge von [mm] $B\,.$ [/mm]
Andererseits gilt für ein Element [mm] $b\,$ [/mm] aus [mm] $B\,,$ [/mm] dass entweder $b [mm] \in [/mm] A$ oder $b [mm] \notin A\,,$ [/mm] so dass $B [mm] \subseteq [/mm] (B [mm] \cap [/mm] A) [mm] \cup [/mm] (B [mm] \cap A^c)\,.$ [/mm]

Die Disjunktheit von $B [mm] \cap [/mm] A$ und $B [mm] \cap A^c$ [/mm] steckt in obiger Argumentation eigentlich schon drin, aber man kann es auch nochmal separat erklären:

Wenn $b [mm] \in [/mm] B [mm] \cap A\,,$ [/mm] dann ist $b [mm] \in [/mm] B$ und $b [mm] \in A\,,$ [/mm] so dass $b [mm] \in A^c$ [/mm] nicht mehr gelten kann (sonst würde ja $b [mm] \notin [/mm] A$ gelten). Wäre nun $b [mm] \in [/mm] B [mm] \cap A^c\,,$ [/mm] so folgte aber eben der Widerspruch $b [mm] \in A^c$ [/mm] wegen $B [mm] \cap A^c \subseteq A^c\,.$ [/mm]
Also:
$$b [mm] \in [/mm] B [mm] \cap [/mm] A$$
[mm] $$\Rightarrow [/mm] b [mm] \notin [/mm] B [mm] \cap A^c\,.$$ [/mm]

Da für Mengen [mm] $X,\,Y$ [/mm] gilt $X [mm] \cap [/mm] Y = [mm] \emptyset \gdw \not\exists\; [/mm] x [mm] \in [/mm] X: x [mm] \in [/mm] Y [mm] \;\;(\gdw \not\exists\; [/mm] y [mm] \in [/mm] Y: y [mm] \in [/mm] X) [mm] \;\;\gdw \forall\; [/mm] x [mm] \in [/mm] X: x [mm] \notin Y\;\;(\gdw \forall\; [/mm] y [mm] \in [/mm] Y: y [mm] \notin [/mm] X)$ haben wir die Disjunktheit der Vereinigung rechterhand des Gleichheitszeichen (erneut) begründet.

Gruß,
Marcel

Bezug
        
Bezug
Wahrscheinlicht P(A u B^c): Begründung der Formel...
Status: (Antwort) fertig Status 
Datum: 09:27 Mi 20.04.2011
Autor: Marcel

Hallo,

> [mm]P(A) = \frac{3}{5}, \; P(B) = \frac{3}{10}, \; P(A \cap B) \;=\; \frac{1}{10}[/mm]
>  
> Berechne [mm]P(A\cup B^c)[/mm]
>  
> Eigentlich sollte das ja nicht schwer sein, mir fällt nur
> leider keine geeignete Termumformung ein. :(
>  
> Ich habe das ganze mal aufgemalt und bin zu dem Schluss
> gekommen, dass
>  [mm]P(A\cup B^c) = P(B^c) + P(A\cap B)[/mm]
>  
> gilt.

auch das läßt sich leicht herleiten, wenn man
$$A [mm] \cup B^c=(A \cap [/mm] B) [mm] \cup B^c$$ [/mm]
beachtet (Beweis?). Die rechte Seite ist dabei wegen $A [mm] \cap [/mm] B [mm] \subseteq [/mm] B$ und der offensichtlichen Beziehung $B [mm] \cap B^c=\emptyset$ [/mm] eine disjunkte Vereinigung.

Übrigens hast Du diese Beziehung dann quasi auf zwei Wegen gezeigt, denn:
Wie eben gesehen gilt mit de Morgan
$$P(A [mm] \cup B^c)=1-(P(B)-P(A \cap [/mm] B))=(1-P(B))+P(A [mm] \cap B)\,,$$ [/mm]
und rechterhand kann man nun [mm] $P(B^c)=1-P(B)$ [/mm] benützen.

Gruß,
Marcel

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Wahrscheinlichkeitstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de