www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Stochastik" - Wahrschenlichkeitsberechnung
Wahrschenlichkeitsberechnung < Stochastik < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Wahrschenlichkeitsberechnung: Aufgabe
Status: (Frage) beantwortet Status 
Datum: 11:48 Sa 09.09.2006
Autor: laura.dis

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt



Der Lehrer hat uns eine Aufgabe gestellt. Ist nicht aus dem Buch etc. (denk ich)

P(A) = 0,3
P(B-quer) = 0,6
P( A-quer [mm] \cap [/mm] B) = 0,1

Die Frage war: Berechne P(A-quer); P(B); P(A [mm] \cap [/mm] B); P(A [mm] \cup [/mm] B) und P(A [mm] \cup [/mm] B-quer)

Meine Überlegung:

Ich habe einen Kreis in 10 Teile geteil. Wenn P(A-quer) sieben Teile einnimmt und P(B) vier dann ist ein Teil min. geschnitten,daher P(A-quer [mm] \cap [/mm] B) = 0,1.
Das habe ich auf weitere übertragen. P(A [mm] \cap [/mm] B) : 3 Teile und 4 Teile, also ist die geschnittene Menge min. leere Menge. Vergleichbar mit E= (1,2,3) ; F=(4,5,6) -> E [mm] \cap [/mm] F = leere Menge

Meine Lösung:

P(A-quer) = 0,7
P(B) = 0,4
P(A [mm] \cap [/mm] B) = {}
P(A [mm] \cup [/mm] B) = 0,4
P( A [mm] \cup [/mm] B-quer) = 0,6

Ist diese Überlegung und die Lösung richtig?
Bitte um Rückmeldung.

        
Bezug
Wahrschenlichkeitsberechnung: Antwort
Status: (Antwort) fertig Status 
Datum: 13:51 Sa 09.09.2006
Autor: Zwerglein

Hi, laura,

> P(A) = 0,3
>  P(B-quer) = 0,6
>  P( A-quer [mm]\cap[/mm] B) = 0,1

"A-quer, etc. kannst Du mit " \ overline { } " hinkriegen! siehe Eingabehilfen!

> Die Frage war: Berechne P(A-quer); P(B); P(A [mm]\cap[/mm] B); P(A
> [mm]\cup[/mm] B) und P(A [mm]\cup[/mm] B-quer)
>  
> Meine Überlegung:
>  
> Ich habe einen Kreis in 10 Teile geteil. Wenn P(A-quer)
> sieben Teile einnimmt und P(B) vier dann ist ein Teil min.
> geschnitten,daher P(A-quer [mm]\cap[/mm] B) = 0,1.

Was bedeutet denn "min."???

>  Das habe ich auf weitere übertragen. P(A [mm]\cap[/mm] B) : 3 Teile
> und 4 Teile, also ist die geschnittene Menge min. leere
> Menge.

Das kann nun aber nicht sein, denn [mm] (\overline{A}\cap [/mm] B) [mm] \cup [/mm] (A [mm] \cap [/mm] B)
muss logischerweise B ergeben!
Demnach ist P((A [mm] \cap [/mm] B) = 0,4 - 0,1 = 0,3

> Meine Lösung:
>  
> P(A-quer) = 0,7
>  P(B) = 0,4
>  P(A [mm]\cap[/mm] B) = {}

Falsch! siehe oben
(zudem müsstest Du als Ergebnis eine ZAHL, also in Deinem Fall 0, nicht eine "Menge" notieren! [mm] \{ \} \not= [/mm] 0 !!!)

>  P(A [mm]\cup[/mm] B) = 0,4

Richtig! (Zufall?)

>  P( A [mm]\cup[/mm] B-quer) = 0,6

Da krieg' ich aber 0,9 raus!

> Ist diese Überlegung und die Lösung richtig?

Da die Lösung falsch ist, erscheint mir Deine Vorgehensweise äußerst zweifelhaft!
Hast Du schon mal was von 4-Feldertafel oder Venn-Diagramm gehört?

mfG!
Zwerglein


Bezug
                
Bezug
Wahrschenlichkeitsberechnung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 15:12 Sa 09.09.2006
Autor: laura.dis

Mh,
muss dann weiter überlegen.
Fangen erst damit an in der Schule, muss man erst reinkommen.

Vielen Dank!

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de