www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Algebra" - Wann ist G zyklisch?
Wann ist G zyklisch? < Algebra < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Wann ist G zyklisch?: Verständnisproblem
Status: (Frage) beantwortet Status 
Datum: 17:40 So 24.02.2008
Autor: Docy

Aufgabe
Sei G eine Gruppe der Ordnung n. Hat G für jeden Teiler d|n höchstens [mm] \phi(d) [/mm] (Eulerische Phifkt) Elemente der Ordnung d, so ist G zyklisch. Ist umgekehrt G zyklisch [mm] \Rightarrow [/mm] für alle d|n ex. genau [mm] \phi(d) [/mm] Elemente der Ordnung d.

Hallo,
ich habe hier den Beweis bereits vorliegen, aber ich verstehe ihn leider nicht, ich hoffe mir kann da jemand weiterhelfen.
Zum Beweis:
[mm] "\Rightarrow": [/mm] Bezeichne [mm] \gamma(d) [/mm] die Anzahl der Elemente der Ordnung d in G [mm] \Rightarrow \gamma(d)\le\phi(d) \forall [/mm] d|n, wobei [mm] \phi [/mm] die Eulerische Phifkt ist.

Warum ist das so? Warum ist  [mm] \gamma(d)\le\phi(d)? [/mm] Was hat denn [mm] \phi(d) [/mm] damit zu tun???
Der Beweis geht dann noch weiter, aber der Rest ist klar, zumindest in diese Richtung. Jetzt die andere Richtung.

[mm] "\Leftarrow": [/mm] Sei [mm] G=\{g^k | 0\le k\le n-1 \} [/mm] zyklisch.
[mm] g^k [/mm] hat Ordnung n [mm] \gdw [/mm] ggT(k,n)=1, also gibt es [mm] \phi(n) [/mm] Elemente der Ordnung n.

Das verstehe ich auch nicht, warum hat [mm] g^k [/mm] die Ordnung n [mm] \gdw [/mm] ggT(k,n)=1 ??? Kann mir das noch jemand erklären, bitte.
Der Rest vom Beweis ist nicht mehr so wichtig. Außer jemand möchte das gerne noch wissen, dann stelle ich ihn rein.

Ich würde mich echt freuen, wenn mir jemand helfen könnte
Gruß Docy

        
Bezug
Wann ist G zyklisch?: Antwort
Status: (Antwort) fertig Status 
Datum: 19:35 So 24.02.2008
Autor: Stefan_K

Hallo Docy,

der Beginn im Teil [mm] "\Rightarrow" [/mm] ist lediglich eine Umformulierung der Voraussetzung.

Für die Frage in der anderen Richtung [mm] "\Leftarrow" [/mm] habt ihr doch bestimmt einen Satz gehabt, den der Beweis verwendet, sonst würde es nicht einfach so dastehen. Vielleicht habt ihr ihn in der Form [mm] \mathrm{ord}(g^k) [/mm] = [mm] \bruch{n}{\ggT(k,n)} [/mm] gehabt.

Viele Grüße,

Stefan


Bezug
                
Bezug
Wann ist G zyklisch?: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:35 So 24.02.2008
Autor: Docy

Hallo nochmal,
danke für die Antwort, ich hab noch eine Frage:
Reicht bei der Rückrichtung nicht einfach aus, wenn man zeigt, dass [mm] g^k [/mm] hat die Ordnung c [mm] \gdw [/mm] ggT(k,c)=1 [mm] \Rightarrow [/mm] G hat [mm] \phi(c) [/mm] Elemente der Ordnung c.

Würde das nicht ausreichen?

Gruß Docy

Bezug
                        
Bezug
Wann ist G zyklisch?: Antwort
Status: (Antwort) fertig Status 
Datum: 22:31 So 24.02.2008
Autor: Stefan_K

Hallo Docy,

was bringt die linke Aussage z.B. für c=1? Es ist immer ggT(k,1)=1.

Viele Grüße,

StefanK


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de