www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "stochastische Prozesse" - Warteschlangenmodell
Warteschlangenmodell < stoch. Prozesse < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "stochastische Prozesse"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Warteschlangenmodell: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 16:06 Mi 16.12.2009
Autor: Kojote123

Aufgabe
Ein Konzertveranstalter hat ein Fanartikelgeschäft und möchte ein Warteschlangenmodell aufstellen: Fans (Kunden) treffen am Fanartikelgeschäft (Service-Station) ein, die nur einen Verkäufer (Server) hat.
Zunächst muss die Ankunft der Kunden spezifiziert werden.
In einem Zeitintervall kann maximal ein Kunde eintreffen. Die Wahrscheinlichkeit für die Ankunft eines Kunden in einem Zeitintervall ist p.
Die Ankunft eines Kunden in einem Zeitintervall ist unabhängig davon, ob in irgendeinem anderen Zeitintervall ein Kunde eingetroffen ist.
Ein Kunde wird nicht in dem Zeitabschnitt bedient, in dem er eingetroffen ist, auch wenn die Warteschlange zu diesem Zeitpunkt leer ist.
Ähnliche Festlegungen treffen wir für das Verlassen des Systems.
Ein Kunde verlässt das System erst wieder, nachdem sein Service beendet wurde.
Die Wahrscheinlichkeit dafür, dass ein Kunde das System in einem Zeitabschnitt wieder verlässt ist r.
Es kann maximal ein Kunde in einem Zeitabschnitt das System verlassen.
Das Verlassen des Systems ist unabhängig davon, wie viel Zeit beim Service vergangen ist.
Für die Warteschlange gelten die folgenden Annahmen:
Die Reihenfolge, in der die Kunden die Warteschlange verlassen, ist FCFS.
Die maximale Länge der Warteschlange ist n.
Lösen Sie die folgenden Punkte:

a)Handelt es sich um ein diskretes oder ein stetiges Problem? (Mit Erläuterung)

b)Geben Sie die Zustandsmenge an! Was wird durch einen Zustand repräsentiert?

c)Berechnen Sie die Transitionswahrscheinlichkeiten und geben Sie für n = 4 die Transitionsmatrix und das Transitionsdiagramm an!

Guten Tag,

ich habe ein Problem mit der benannten Aufgabe!
Die Teilaufgabe a und b habe ich gelöst! Die Antworten dazu lauten: (in Kurzform)
a)Da kein Zeitintervall vorhanden ist handelt es sich um ein diskretes Problem.
b)Die Zustandsmenge ist 0-4, dabei wird die Warteschlange repräsentiert bzw. die Anzahl von Leuten in der Warteschlange. Anmerkung dazu, die Anlauf- und Abschaltzeiten werden nicht betrachtet.
Nun weiß ich leider nicht weiter wie ich bei Aufgabe c) vorgehen soll?
Viele Grüße
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.


        
Bezug
Warteschlangenmodell: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 16:20 Do 24.12.2009
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "stochastische Prozesse"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de