www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Stochastik" - Wartesystem als Markov Kette..
Wartesystem als Markov Kette.. < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Wartesystem als Markov Kette..: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 15:29 Sa 21.03.2009
Autor: martingale

Aufgabe
Die Aufgabe lautet:


Betrachten Sie eine Bedienstation an der nacheinander Kunden ankommen und bedient werden. Zu Anfang jeder Zeiteinheit (ZE) kommt mit Wahrscheinlichkeit p genau ein Kunde an und mit Wahrscheinlichkeit 1-p keiner. Befindet sich kein weiterer Kunde im System, so wird sofort mit der Bedienung des Kunden begonnen, ansonsten reiht er sich in eine Warteschlange ein. Es können maximal 100 Kunden im Wartesystem platz nehmen (inklusive des Kunden in Bedienung). Kunden die an einem vollem System ankommen werden abgewiesen und gehen
verloren.

Die Bedienstation kann drei verschiedene Zustände annehmen:

Zustand 0: Die Station ist ausgeschaltet und bedient keine Kunden.

Zustand 1: Die Station arbeitet mit niedriger Leistung. Die Bedienzeit eines Kunden -
sofern vorhanden - ist geometrisch verteilt mit Parameter q.

Zustand 2: Die Station arbeitet mit hoher Leistung und bedient - wieder sofern vorhanden - genau einen Kunden pro ZE.


Die Entscheidung darüber, in welchem Zustand die Station betrieben wird, wird am Anfang jeder ZE getroffen (kurz nach dem potentiellen Eintreffen eines Kunden) und hängt mit den Kosten zusammen, welche für den Betrieb der Station anfallen:

Wartekosten: Pro Kunde im System und ZE fallen Kosten in Höhe von [mm] c_w [/mm] an.

Betriebskosten: Pro ZE fallen kosten in Höhe von [mm] c_1 [/mm] an, wenn sich das System in Zustand 1, und Kosten in Höhe von [mm] c_2, [/mm] wenn sich das System Zustand 2 befndet.

Einschaltkosten: Für das Einschalten des Systems in den Zustand 1 (vom ausgeschal-
teten System ausgehend) entstehen Kosten in Höhe von K1. Für das Hochschalten des System von Zustand 1 in den Zustand 2 Kosten in Höhe von K2. Schaltet man ein ausgeschaltetes System gleich in den Zustand 2, so sind Kosten von K1 + K2 zu bezahlen.

Der Betreiber der Station hat sich nun drei Strategien überlegt, mit denen er sie betreiben könnte:

Strategie 1: Das System wird immer in Zustand 1 betrieben

Strategie 2: Das System wird immer in Zustand 2 betrieben

Strategie 3: Ist das System ausgeschaltet, so bleibt es aus wenn kein Kunde im System ist. Bei einem oder mehreren Kunden im System wird es sofort eingeschaltet, und zwar bei einem bis 8 Kunden in den Zustand 1 und bei 9 oder mehr Kunden in den Zustand 2. Befndet sich das System im Zustand 1, so wird es nicht mehr ausgeschaltet sondern verbleibt bei 0 bis 8 Kunden im System im Zustand 1, bei 9 oder mehr Kunden wird es in den Zustand 2 hochgeschaltet. Ist das System in Zustand 2, so bleibt es in diesem Zustand wenn sich 4 oder mehr Kunden im System befnden, anderenfalls wird es in den Zustand 1 heruntergeschaltet.

Aufgaben:

a) Beschreiben Sie die zeitliche Entwicklung der Anzahl der Kunden im System für alle drei Strategien durch Markov-Ketten. Geben Sie die Zustandsräume und die Übergangsmatrizen (verständlich beschrieben und formatiert) aus.

b) Berechnen Sie die erwarteten Kosten pro Zeiteinheit des Systems für alle drei Strategien aufgrund der Werte: [mm] c_w [/mm] = 1; [mm] c_1= [/mm] 1; [mm] c_2 [/mm] = 4; K1 = 5; K2 = 15.

c) Berechnen Sie die erwarteten diskontierten Gesamtkosten für alle drei Strategien aufgrund der obigen Werte.

Hinweis: Bei richtiger Modellierung der Markov-Ketten besitzen diese jeweils nur eine rekurrente Klasse.

p=q=0.5, Diskontierungsfaktor a=0.9



Hallo zusammen,

Ich hoffe, dass ich auf dieser Art und Weise Hinweise und Tipps bekommen werde, wie diese Aufgabe zu knacken ist. Momentan habe ich leider kein Plan, wie dies zu modellieren ist. Für Hinweise und Vorschläge würde ich sehr dankbar sein. Diese Aufgabe muss ich als Java Programm implementieren, das bedeutet aber nicht, dass hier eine Simulation verlangt wird. Es ist verlangt eine analytische Lösung unterstützt durch ein Java Programm. Danke im Voraus !


Da ich momentan gar keine Idee habe, würde ich für Tipps und Hinweise sehr dankbar sein.

Gruß,
Marko


Ich habe diese Frage auch in folgenden Foren auf anderen Internetseiten gestellt:

http://www.matheboard.de/thread.php?threadid=389592


        
Bezug
Wartesystem als Markov Kette..: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 16:20 Di 24.03.2009
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de