www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Folgen und Reihen" - Was genau ist eine Reihe?
Was genau ist eine Reihe? < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Was genau ist eine Reihe?: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 08:40 Fr 07.05.2010
Autor: Zweipunktnull

Hallo,

ich habe eine Frage zu Reihen. Ich verstehe noch nicht ganz, was eine Reihe genau ist. Mein Problem ist, dass die Definition in einem Mathematik-Buch von mir nach meinem Verständnis nicht mit der in meinem Matheskript übereinstimmt.

Hier die beiden Definitionen:

Buch:
Man nennt den formalen Ausdruck

[mm] \summe_{k=0}^{\infty}a_{k}=a_{0}+a_{1}+a_{2}+a_{3}+... [/mm] mit [mm] a_{i}\in\IR [/mm] (oder [mm] \IC) [/mm]

eine unendliche Reihe oder kurz Reihe.

Skript:
Die aus den Folgegliedern [mm] a_{k} [/mm] gebildeten Summen [mm] s_{n}=\summe_{k=0}^{n}a_{k}, [/mm] also [mm] s_{0}=a_{0}, s_{1}=a_{0}+a_{1}, s_{2}=a_{0}+a_{1}+a_{2}, [/mm] ..., heißen Partialsummen. Die Folge der Partialsummen [mm] {s_{n}} [/mm] heißt Reihe.

------

Wenn wir nun z. B. die Folge a = 1, 0.1, 0.01, 0.001, 0.0001, ... haben, was ist dann die dazugehörige Reihe?

Nach der ersten Definition würde ich folgendes unter der Reihe verstehen:
Reihe = 1 + 0.1 + 0.01 + 0.001 + 0.0001 + ...

Nach der zweiten Definition würde ich folgendes unter der Reihe verstehen:
Reihe = 1, 1.1, 1.11, 1.111, 1.1111, ...

Was ist denn nun aber eine Reihe? Unter ist eine der Definitionen tatsächlich falsch oder verstehe ich eine der beiden nur falsch?

Die Frage wurde in keinem anderen Forum gestellt.

        
Bezug
Was genau ist eine Reihe?: Antwort
Status: (Antwort) fertig Status 
Datum: 08:52 Fr 07.05.2010
Autor: dormant

Hi!

Die korrekte Definition einer Reihe ist eben eine Folger von Partialsummen. Durch [mm] \summe_{n=1}^{\infty}x_n [/mm] bezeichnet man den GRENZWERT dieser Folge. Blöd gesagt gibt die erste Definition "nur die letzte Partialsumme" an.

> Hallo,
>  
> ich habe eine Frage zu Reihen. Ich verstehe noch nicht
> ganz, was eine Reihe genau ist. Mein Problem ist, dass die
> Definition in einem Mathematik-Buch von mir nach meinem
> Verständnis nicht mit der in meinem Matheskript
> übereinstimmt.
>  
> Hier die beiden Definitionen:
>  
> Buch:
>  Man nennt den formalen Ausdruck
>  
> [mm]\summe_{k=0}^{\infty}a_{k}=a_{0}+a_{1}+a_{2}+a_{3}+...[/mm] mit
> [mm]a_{i}\in\IR[/mm] (oder [mm]\IC)[/mm]
>  
> eine unendliche Reihe oder kurz Reihe.
>  
> Skript:
>  Die aus den Folgegliedern [mm]a_{k}[/mm] gebildeten Summen
> [mm]s_{n}=\summe_{k=0}^{n}a_{k},[/mm] also [mm]s_{0}=a_{0}, s_{1}=a_{0}+a_{1}, s_{2}=a_{0}+a_{1}+a_{2},[/mm]
> ..., heißen Partialsummen. Die Folge der Partialsummen
> [mm]{s_{n}}[/mm] heißt Reihe.
>  
> ------
>  
> Wenn wir nun z. B. die Folge a = 1, 0.1, 0.01, 0.001,
> 0.0001, ... haben, was ist dann die dazugehörige Reihe?
>  
> Nach der ersten Definition würde ich folgendes unter der
> Reihe verstehen:
>  Reihe = 1 + 0.1 + 0.01 + 0.001 + 0.0001 + ...

Genau. Das ist die Reihe [mm] \summe_{n=0}^{\infty}\bruch{1}{10^n}. [/mm] Und sie ergibt ist aus dem Grenzwert ...
  

> Nach der zweiten Definition würde ich folgendes unter der
> Reihe verstehen:
>  Reihe = 1, 1.1, 1.11, 1.111, 1.1111, ...

von den Partialsummen [mm] \limes_{k\rightarrow\infty}\summe_{n=0}^{k}\bruch{1}{10^n} [/mm] .
  

> Was ist denn nun aber eine Reihe? Unter ist eine der
> Definitionen tatsächlich falsch oder verstehe ich eine der
> beiden nur falsch?

Beide Definitionen sind eben streng genommen nicht gleich, da die erste nur den Grenzwert angibt. Aber wenn mand das [mm] \infty [/mm] druch ein k ersetzt erhält man die Folge, aus der dieser Grenzwert resultiert. Und da man bei Folgen oft nur an dem Grenzwert interessiert ist, lässt man das mit den Partialsummen oft unter den Tisch fallen.

Grüße,
dormant

Bezug
        
Bezug
Was genau ist eine Reihe?: Antwort
Status: (Antwort) fertig Status 
Datum: 08:55 Fr 07.05.2010
Autor: fred97


> Hallo,
>  
> ich habe eine Frage zu Reihen. Ich verstehe noch nicht
> ganz, was eine Reihe genau ist. Mein Problem ist, dass die
> Definition in einem Mathematik-Buch von mir nach meinem
> Verständnis nicht mit der in meinem Matheskript
> übereinstimmt.
>  
> Hier die beiden Definitionen:
>  
> Buch:
>  Man nennt den formalen Ausdruck
>  
> [mm]\summe_{k=0}^{\infty}a_{k}=a_{0}+a_{1}+a_{2}+a_{3}+...[/mm] mit
> [mm]a_{i}\in\IR[/mm] (oder [mm]\IC)[/mm]
>  
> eine unendliche Reihe oder kurz Reihe.
>  
> Skript:
>  Die aus den Folgegliedern [mm]a_{k}[/mm] gebildeten Summen
> [mm]s_{n}=\summe_{k=0}^{n}a_{k},[/mm] also [mm]s_{0}=a_{0}, s_{1}=a_{0}+a_{1}, s_{2}=a_{0}+a_{1}+a_{2},[/mm]
> ..., heißen Partialsummen. Die Folge der Partialsummen
> [mm]{s_{n}}[/mm] heißt Reihe.
>  
> ------
>  
> Wenn wir nun z. B. die Folge a = 1, 0.1, 0.01, 0.001,
> 0.0001, ... haben, was ist dann die dazugehörige Reihe?
>  
> Nach der ersten Definition würde ich folgendes unter der
> Reihe verstehen:
>  Reihe = 1 + 0.1 + 0.01 + 0.001 + 0.0001 + ...
>  
> Nach der zweiten Definition würde ich folgendes unter der
> Reihe verstehen:
>  Reihe = 1, 1.1, 1.11, 1.111, 1.1111, ...
>  
> Was ist denn nun aber eine Reihe? Unter ist eine der
> Definitionen tatsächlich falsch oder verstehe ich eine der
> beiden nur falsch?



Die erste Definition ist Schwachsinn !! Aus welchem Buch stammt die denn ?

FRED

>  
> Die Frage wurde in keinem anderen Forum gestellt.


Bezug
                
Bezug
Was genau ist eine Reihe?: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 09:12 Fr 07.05.2010
Autor: Zweipunktnull


> Die erste Definition ist Schwachsinn !! Aus welchem Buch stammt die denn ?

Teschl, G./Teschl, S. (2008): Mathematik für Informatiker, Diskrete Mathematik und Lineare Algebra, Band 1, 3. Auflage, Berlin/Heidelberg 2008


EDIT: Sorry, verklickt, sollte keine Frage werden.
In Mitteilung umgewandelt. Dieter

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de