www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Elektrotechnik" - Wechselstrom
Wechselstrom < Elektrotechnik < Ingenieurwiss. < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Elektrotechnik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Wechselstrom: Verständnisproblem
Status: (Frage) beantwortet Status 
Datum: 13:43 So 15.02.2015
Autor: smoot

Aufgabe
I = 2,5 A; I2 = 1 A;
I2 soll I um 90° voreilen.

[Dateianhang nicht öffentlich]

Hallo,


In einem Zeigerdiagramm würden [mm] I2^{2} [/mm] + [mm] I1^{2} [/mm] = [mm] I^{2} [/mm] ergeben (Pythagoras).
Weiter gilt I1 = I - I2.

Dann müsste I1 = [mm] \wurzel{(2,5)^{2} - (1)^{2}} [/mm] sein.

oder

I1 = [mm] \wurzel{(2,5*(cos(90°)+j*sin(90°)))^{2} - (1*(cos(0°)+j*sin(0°)))^{2}} [/mm]

Aber warum stimmt bei dieser Berechnung das Ergebnis nicht?

Danke für eure Hilfe.

*Ich habe diese Frage in keinem anderen Forum gestellt*


Dateianhänge:
Anhang Nr. 1 (Typ: jpg) [nicht öffentlich]
        
Bezug
Wechselstrom: Antwort
Status: (Antwort) fertig Status 
Datum: 14:05 So 15.02.2015
Autor: GvC


> I = 2,5 A; I2 = 1 A;
>  I2 soll I um 90° voreilen.
>  [Dateianhang nicht öffentlich]
>  

...

> In einem Zeigerdiagramm würden [mm]I2^{2}[/mm] + [mm]I1^{2}[/mm] = [mm]I^{2}[/mm]
> ergeben (Pythagoras).

Da Dein Dateianhang wegen Urheberrechtsverletzung gesperrt ist, lässt sich nur vermuten, dass die geometrische Summe von [mm]\underline{I}_1[/mm] und [mm] \underline{I}_2 [/mm] den Gesamtstrom I ergeben soll. Dann ist Deine Pythagoras-Gleichung allerdings falsch, sofern Du die Aufgabenstellung richtig wiedergegeben hast, dass nämlich der Teilstrom [mm] \underline{I}_2 [/mm] dem Gesamtstrom um 90° voreilen soll. Dann muss laut Zeigerbild der Strom [mm] \underline{I}_1 [/mm] um [mm] 180^\circ -\arccos{\frac{I_2}{I_1}} [/mm] dem Strom [mm] \underline{I}_2 [/mm] nacheilen.

Bezug
                
Bezug
Wechselstrom: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:38 So 15.02.2015
Autor: smoot

Warum gehst du von 180° aus und wie komme ich an den Strom I1 ?


Ich habe nochmals nachgegrübelt und vielleicht funktioniert die Berechnung auch so:

    [mm] \bruch{Gegenkathete}{Hypotenuse} [/mm] = sin(Phi)

<=> [mm] \bruch{I2}{I} [/mm] = sin(Phi)

<=> sin(Phi) = 0,4 <=> Phi = 23,58°

dann könnte ich doch sagen:

<=> [mm] \bruch{Ankathete}{Hypotenuse} [/mm] = cos(Phi)

<=> [mm] \bruch{2,5}{cos(23,58)} [/mm] = I1

    I1 = 2,73 A * [mm] e^{j 23,58} [/mm]

oder irre ich mich da?

Bezug
                        
Bezug
Wechselstrom: Antwort
Status: (Antwort) fertig Status 
Datum: 15:32 So 15.02.2015
Autor: GvC


> Warum gehst du von 180° aus ...

siehe Zeigerbild.



> ... und wie komme ich an den Strom
> I1 ?
>  
>
> Ich habe nochmals nachgegrübelt und vielleicht
> funktioniert die Berechnung auch so:
>  
> [mm]\bruch{Gegenkathete}{Hypotenuse}[/mm] = sin(Phi)
>  
> <=> [mm]\bruch{I2}{I}[/mm] = sin(Phi)

Ja, so ist es sogar noch besser, da ja [mm] I_2 [/mm] und I gegeben sind, und nicht [mm] I_2 [/mm] und [mm] I_1. [/mm] Da habe ich nicht richtig aufgepasst.

Der Sinus von [mm] \varphi [/mm] ist derselbe wie der von [mm] 180^\circ-\varphi. [/mm] Du kannst also getrost so rechnen, solltest Dir aber darüber im Klaren sein, dass [mm] \underline{I}_1 [/mm] tatsächlich um mehr als 90° dem Strom [mm] \underline{I}_2 [/mm] nacheilt.

Bezug
                                
Bezug
Wechselstrom: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:36 So 15.02.2015
Autor: smoot

Danke für deine schnellen Antworten.

Aber ich verstehe immer noch nicht ganz warum die Pythagoras Gleichung hier nicht anwendbar ist.

Bezug
                                        
Bezug
Wechselstrom: Antwort
Status: (Antwort) fertig Status 
Datum: 15:56 So 15.02.2015
Autor: GvC


> Danke für deine schnellen Antworten.
>  
> Aber ich verstehe immer noch nicht ganz warum die
> Pythagoras Gleichung hier nicht anwendbar ist.

Sie ist durchaus anwendbar. Allerdings nicht so, wie Du sie aufgestellt hast. Ich weise in diesem Zusammenhang noch einmal auf das Zeigerbild und auf die Bedingung in der Aufgabenstellung hin, dass [mm] \underline{I}_2 [/mm] um 90° dem Gesamtstrom voreilen muss. Dann lautet die Gleichung des Pythagoras

[mm]I^2+I_2^2=I_1^2[/mm]

Du hattest jedoch fälschlicherweise geschrieben

[mm]I_2^2+I_1^2=I^2[/mm]

Siehst du den Unterschied? Mit der richtigen Gleichung erhältst Du

[mm]I_1=\sqrt{I^2+I_2^2}[/mm]

Mit Deiner Gleichung würdest Du herausbekommen

[mm]I_1=\sqrt{I^2-I_2^2}[/mm]

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Elektrotechnik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de