www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Analysis" - Wegintegral
Wegintegral < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Wegintegral: Frage und Idee
Status: (Frage) beantwortet Status 
Datum: 14:44 Mi 08.12.2004
Autor: back

gegeb. sei ein vektorfeld F(x,y,z) = (-x + yz², 2z+y, -z) und die beiden bei (-1,0,0) beginnenden und (0,0,1) endenden Integrationswege  [mm] \gamma_{1} \gamma_{2} [/mm]

[mm] \gamma_{1} [/mm] beschreibt den Parabelbogen (x,0,(1+x)²)

(a) gebe geeignete Parametrisierungen [mm] \nu_{1}[/mm](t) [mm] \nu_{2}[/mm](t)an


ist [mm] \nu_{1}[/mm](t) =[mm] \vektor{t \\ 0 \\1+2t+t²} [/mm] richtig ?


[mm] \gamma_{2} [/mm] besteht aus einer Geraden von (-1,0,0) bis (0,0,-1) und von einer Kreisbahn von (0,0,-1) über (1,0,0) nach (0,0,1)

Wie lautet dann [mm] \nu_{2} [/mm](t) ?

so: (-1,0,0) + t(1,0,-1) + (cos(t),0, sin(t))   ?

wie kann man die Gerade und den Halbkreis als ein Wegintegral ausdrücken ? (mit nur einem Parameter t ?)



Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt. und benötige es vll morgen bei ner Klausur ^^  DANKE IM VORRAUS !!!


        
Bezug
Wegintegral: Antwort
Status: (Antwort) fertig Status 
Datum: 12:42 Sa 18.12.2004
Autor: Stefan

Hallo!

> gegeb. sei ein vektorfeld F(x,y,z) = (-x + yz², 2z+y, -z)
> und die beiden bei (-1,0,0) beginnenden und (0,0,1)
> endenden Integrationswege  [mm]\gamma_{1} \gamma_{2}[/mm]
>  
>
> [mm]\gamma_{1}[/mm] beschreibt den Parabelbogen (x,0,(1+x)²)
>  
> (a) gebe geeignete Parametrisierungen [mm]\nu_{1}[/mm](t)
> [mm]\nu_{2}[/mm](t)an
>  
>
> ist [mm]\nu_{1}[/mm](t) =[mm] \vektor{t \\ 0 \\1+2t+t²}[/mm] richtig ?

[notok]

Der Weg soll doch in $(-1,0,0)$ beginnen...

Richtig wäre also (Transformation $t [mm] \to [/mm] t-1$):

[mm]\nu_{1}[/mm](t) =[mm] \vektor{t-1 \\ 0 \\t²}[/mm]

> [mm]\gamma_{2}[/mm] besteht aus einer Geraden von (-1,0,0) bis
> (0,0,-1) und von einer Kreisbahn von (0,0,-1) über (1,0,0)
> nach (0,0,1)
>  
> Wie lautet dann [mm]\nu_{2} [/mm](t) ?
>  
> so: (-1,0,0) + t(1,0,-1) + (cos(t),0, sin(t))   ?
>  
> wie kann man die Gerade und den Halbkreis als ein
> Wegintegral ausdrücken ? (mit nur einem Parameter t ?)

Du musst die Funktion eben stückweise definieren (mit Fallunterscheidung).

Viele Grüße
Stefan
  

Bezug
                
Bezug
Wegintegral: Frage an Stefan
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 08:39 Di 21.12.2004
Autor: e.kandrai

Sach ma, wäre die Parametrisierung der ersten Kurve [mm]\nu_1(t)[/mm] von back nicht auch möglich gewesen, wenn man den Parameter t von -1 bis 0 laufen lässt?
Sollte ja bei deiner Transformation [mm]t \to t-1[/mm] auf's selbe hinauslaufen.


Bezug
                        
Bezug
Wegintegral: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 14:34 Di 21.12.2004
Autor: Stefan

Hallo E.Karndrai!

Ja, klar, das ist richtig, aber ich bin davon ausgegangen, dass über $[0,1]$ parametrisiert wird (so wie eigentlich immer, wenn nichts sonst dabei steht.) Aber wenn es so gemeint war, wie du jetzt schreibst, war es natürlich richtig.

Liebe Grüße
Stefan

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de