www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Reelle Analysis mehrerer Veränderlichen" - Wegintegrale
Wegintegrale < mehrere Veränderl. < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Wegintegrale: Vereinfachung, Skalarprodukt
Status: (Frage) beantwortet Status 
Datum: 12:35 Do 11.09.2008
Autor: Marcel08

Aufgabe
Berechnen Sie das Wegintegral von g längs [mm] \gamma [/mm]

g(x,y)=(-y,x), [mm] \gamma(t)=(cos(t),sin(t)), t\in[0,2\pi] [/mm]

Hallo liebe Matheraum- Community,

bei der Berechnung des oben genannten Wegintegrals komme ich an folgender Stelle leider nicht weiter:

1.) [mm] \integral_{0}^{2\pi}{<( g_{1}(cos(t),sin(t)),g_{2}(cos(t),sin(t))),(-sin(t),cos(t))>dt} [/mm]

2.) [mm] \integral_{0}^{2\pi}{<(-sin(t),cos(t)),(-sin(t),cos(t))>dt} [/mm]

Dabei interessiert mich, wie ich von 1.) auf 2.) komme. Genauer gesagt: Wie komme ich vom linken Faktor des Skalarproduktes aus 1.) auf die linke Seite des Skalarproduktes aus 2.)? Irgendwie habe ich da mal wieder ein Brett vor dem Kopf. Über eine baldige Antwort würde ich mich sehr freuen. Gruß,


Marcel

        
Bezug
Wegintegrale: Antwort
Status: (Antwort) fertig Status 
Datum: 13:00 Do 11.09.2008
Autor: angela.h.b.


> Berechnen Sie das Wegintegral von g längs [mm]\gamma[/mm]
>  
> g(x,y)=(-y,x), [mm]\gamma(t)=(cos(t),sin(t)), t\in[0,2\pi][/mm]
>  
> Hallo liebe Matheraum- Community,
>  
> bei der Berechnung des oben genannten Wegintegrals komme
> ich an folgender Stelle leider nicht weiter:
>  
> 1.) [mm]\integral_{0}^{2\pi}{<( g_{1}(cos(t),sin(t)),g_{2}(cos(t),sin(t))),(-sin(t),cos(t))>dt}[/mm]
>  
> 2.)
> [mm]\integral_{0}^{2\pi}{<(-sin(t),cos(t)),(-sin(t),cos(t))>dt}[/mm]
>  
> Dabei interessiert mich, wie ich von 1.) auf 2.) komme.

Hallo,

Du hast doch g(x,y)=(-y,x), dann ist doch [mm] g(\gamma(t))=(-sin(t), [/mm] cos(t)).

Um Deine schreibweise mit den [mm] g_1 [/mm] und [mm] g_2 [/mm] zu benutzen:

[mm] g(x,y)=(g_1(x,y), g_2(x,y)) [/mm] mit [mm] g_1(x,y)=-y [/mm] und [mm] g_2(x,y)=x [/mm]

Also ist [mm] g(\gamma(t))=(g_1(\gamma(t)), g_2(\gamma(t)))=(g_1((cos(t),sin(t)),g_2((cos(t),sin(t)))=((-sin(t), [/mm] cos(t)))

Gruß v. Angela

P.S.: Ich benutze normalerweise die Schreibweise in Spalten. Da kommt man nicht so leicht durcheinander, finde ich.

Bezug
                
Bezug
Wegintegrale: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:21 Do 11.09.2008
Autor: Marcel08

Mh, irgendwie total simpel. Vielen Dank jedenfalls für deine schnelle Hilfe. Mich hat nur beispielsweise die folgende Schreibwesie irritiert:

1.1) [mm] g_{1}(cos(t),sin(t)) [/mm]

Eingesetzt steht ja dort: -y o (cos(t),sin(t))

Also würde ich doch, ausgehend von dieser Schreibweise, sagen: -(cos(t),sin(t)), wenn ich den ganzen Ausdruck für [mm] \gamma(t) [/mm] in -y einsetze.

Jetzt weiß ich ja wie man es richtig macht, aber wäre denn dann streng genommen die Schreibweise 1.1) nicht falsch?

Bezug
                        
Bezug
Wegintegrale: Antwort
Status: (Antwort) fertig Status 
Datum: 13:38 Do 11.09.2008
Autor: angela.h.b.


> Mh, irgendwie total simpel. Vielen Dank jedenfalls für
> deine schnelle Hilfe. Mich hat nur beispielsweise die
> folgende Schreibwesie irritiert:
>  
> 1.1) [mm]g_{1}(cos(t),sin(t))[/mm]
>
> Eingesetzt steht ja dort: -y o (cos(t),sin(t))
>
> Also würde ich doch, ausgehend von dieser Schreibweise,
> sagen: -(cos(t),sin(t)), wenn ich den ganzen Ausdruck für
> [mm]\gamma(t)[/mm] in -y einsetze.
>  
> Jetzt weiß ich ja wie man es richtig macht, aber wäre denn
> dann streng genommen die Schreibweise 1.1) nicht falsch?

Hallo,

nein, [mm] g_{1}(cos(t),sin(t)) [/mm] bedeutet, daß Du den Funktionswert von [mm] g_1 [/mm] an der Stelle (cos(t),sin(t)) sagen sollst.

Ich glaube Dein Problem liegt an folgender Stelle: Du unterscheidest nicht zwischen der Funktion f und ihrem Funktionswert an der Stelle x, also f(x).

Wenn wir mal ins Eindimensionale gehen, das ist etas übersichtlicher:

f: [mm] \IR \to \IR [/mm] mit
[mm] f(x):=x^2 [/mm]

[mm] h:\IR \to \IR [/mm] mit
h(x):=sinx

[mm] f\circ [/mm] h ist die Verkettung der  Funktionen, und es ist  [mm] (f\circ [/mm] h)(x):=f(h(x))= [mm] (h(x))^2=(sinx)^2 [/mm]

Keinesfalls ist das aber [mm] x^2 \circ [/mm]  sinx, denn dieses [mm] \circ [/mm] ist ja für Funktionen erklärt und nicht für reelle Zahlen.

Gruß v. Angela




Bezug
                                
Bezug
Wegintegrale: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 13:43 Do 11.09.2008
Autor: Marcel08

Okay, alles klar! Vielen Dank noch einmal. :-) Gruß,


Marcel

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de