www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Reelle Analysis mehrerer Veränderlichen" - Weglänge
Weglänge < mehrere Veränderl. < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Weglänge: Korrektur
Status: (Frage) beantwortet Status 
Datum: 22:28 Sa 19.05.2012
Autor: Lustique

Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)

Aufgabe
Berechnen Sie die Weglänge $L(\gamma_j)$ der folgenden Wege $\gamma_j$, $j=1,2,3$, und fertigen Sie eine Skizze an.

[...]

b) $\gamma_2\colon [0,2\pi]\to\mathbb{R}^2, \qquad \gamma_2(t)=\begin{pmatrix}\cos^3(t) \\ \sin^3(t)\end{pmatrix}$

[...]

Welche der Wege sind regulär,? Bestimmen Sie ggf. die Singulärstellen.




Hallo,

ich habe diese Aufgabe eben gemacht, und wollte dann mein Ergebnis mal mit WolframAlpha kontrollieren. Da beides nicht zusammenpasst, ich aber bei mir keine Fehler finde, wollte ich euch bitten mal eben über meine Lösung drüber zu schauen.

Also, die Weglänge für $\gamma_2$ wäre ja, da $\gamma_2$ rektifizierbar ist, folgender Ausdruck: $L(\gamma_2)=\int_0^{2\pi} \lVert \dot{\gamma_2}(t)\rVert_2 \mathrm{d}t$.

Ich habe dann also mal angefangen zu rechnen:

$\dot{\gamma_2}}(t)=\begin{pmatrix}-3 \sin(t)\cos^2(t) \\ 3\cos(t)\sin^2(t)\end{pmatrix}$


$L(\gamma_2)=\int_0^{2\pi} \lVert \dot{\gamma_2}(t)\rVert_2 \mathrm{d}t=\int_0^{2\pi} \sqrt{\Big(-3 \sin(t)\cos^2(t)\Big)^2+\Big(3\cos(t)\sin^2(t)\Big)^2}\:\mathrm{d}t=3\int_0^{2\pi} \sqrt{\sin^2(t)\cos^4(t)+\cos^2(t)\sin^4(t)}\:\mathrm{d}t=$

$3\int_0^{2\pi} \sqrt{\Big(\sin^2(t)+\cos^2(t)\Big)\cos^2(t)\sin^2(t)}\:\mathrm{d}t=3\int_0^{2\pi} \sqrt{\cos^2(t)\sin^2(t)}\:\mathrm{d}t=3\int_0^{2\pi} \cos(t)\sin(t)\:\mathrm{d}t=\ldots$

Ab hier dann zwei "Möglichkeiten":

Mein erster Versuch (Additionstheorem):

$3\int_0^{2\pi} \cos(t)\sin(t)\:\mathrm{d}t=\frac{3}{2}\int_0^{2\pi} \Big(\cos(t-t)-\cos(t+t)\Big)\:\mathrm{d}t=\frac{3}{2}\int_0^{2\pi} \Big(1-\cos(2t)\Big)\:\mathrm{d}t=\frac{3}{2}\left(\left[t\right]^{2\pi}_0 - \int_0^{2\pi} \cos(2t)\Big)\:\mathrm{d}t\right)=$

$3\pi-\frac{1}{2}\cdot\frac{3}{2}\left(\int_0^{2\pi} 2\cos(2t)\Big)\:\mathrm{d}t\right)=3\pi-\frac{3}{4}\left[\sin(2t)\right]^{2\pi}_0=3\pi$

Mein zweiter Versuch (Substitution):

$3\int_0^{2\pi} \cos(t)\sin(t)\:\mathrm{d}t=3\int^{\sin(2\pi}_{sin(0)} u\:\mathrm{d}u=3\left[\frac{u^2}{2}\right]^{\sin(2\pi)}_{\sin(0)}=3\left[\frac{\sin^2(t)}{2}\right]^{2\pi}_0=0$

So, jetzt ist ja schon mal offensichtlicherweise min. einer der beiden Versuche falsch, aber ich bin gerade zu doof den/die Fehler zu finden. Könntet ihr mir dabei vielleicht helfen? Habe ich vielleicht auch schon ganz zu Anfang Beträge vergessen, oder so, also bei $\lVert\cdot\rVert_2$?

WolframAlpha spuckt als Ergebnis übrigens 6 aus. ([]WolframAlpha)

        
Bezug
Weglänge: Antwort
Status: (Antwort) fertig Status 
Datum: 22:49 Sa 19.05.2012
Autor: MathePower

Hallo Lustique,

> Berechnen Sie die Weglänge [mm]L(\gamma_j)[/mm] der folgenden Wege
> [mm]\gamma_j[/mm], [mm]j=1,2,3[/mm], und fertigen Sie eine Skizze an.
>
> [...]
>  
> b) [mm]\gamma_2\colon [0,2\pi]\to\mathbb{R}^2, \qquad \gamma_2(t)=\begin{pmatrix}\cos^3(t) \\ \sin^3(t)\end{pmatrix}[/mm]
>  
> [...]
>
> Welche der Wege sind regulär,? Bestimmen Sie ggf. die
> Singulärstellen.
>  
>
>
> Hallo,
>
> ich habe diese Aufgabe eben gemacht, und wollte dann mein
> Ergebnis mal mit WolframAlpha kontrollieren. Da beides
> nicht zusammenpasst, ich aber bei mir keine Fehler finde,
> wollte ich euch bitten mal eben über meine Lösung drüber
> zu schauen.
>
> Also, die Weglänge für [mm]\gamma_2[/mm] wäre ja, da [mm]\gamma_2[/mm]
> rektifizierbar ist, folgender Ausdruck:
> [mm]L(\gamma_2)=\int_0^{2\pi} \lVert \dot{\gamma_2}(t)\rVert_2 \mathrm{d}t[/mm].
>
> Ich habe dann also mal angefangen zu rechnen:
>
> [mm]\dot{\gamma_2}}(t)=\begin{pmatrix}-3 \sin(t)\cos^2(t) \\ 3\cos(t)\sin^2(t)\end{pmatrix}[/mm]
>  
>
> [mm]L(\gamma_2)=\int_0^{2\pi} \lVert \dot{\gamma_2}(t)\rVert_2 \mathrm{d}t=\int_0^{2\pi} \sqrt{\Big(-3 \sin(t)\cos^2(t)\Big)^2+\Big(3\cos(t)\sin^2(t)\Big)^2}\:\mathrm{d}t=3\int_0^{2\pi} \sqrt{\sin^2(t)\cos^4(t)+\cos^2(t)\sin^4(t)}\:\mathrm{d}t=[/mm]
>  
> [mm]3\int_0^{2\pi} \sqrt{\Big(\sin^2(t)+\cos^2(t)\Big)\cos^2(t)\sin^2(t)}\:\mathrm{d}t=3\int_0^{2\pi} \sqrt{\cos^2(t)\sin^2(t)}\:\mathrm{d}t=3\int_0^{2\pi} \cos(t)\sin(t)\:\mathrm{d}t=\ldots[/mm]
>  
> Ab hier dann zwei "Möglichkeiten":
>
> Mein erster Versuch (Additionstheorem):
>
> [mm]3\int_0^{2\pi} \cos(t)\sin(t)\:\mathrm{d}t=\frac{3}{2}\int_0^{2\pi} \Big(\cos(t-t)-\cos(t+t)\Big)\:\mathrm{d}t=\frac{3}{2}\int_0^{2\pi} \Big(1-\cos(2t)\Big)\:\mathrm{d}t=\frac{3}{2}\left(\left[t\right]^{2\pi}_0 - \int_0^{2\pi} \cos(2t)\Big)\:\mathrm{d}t\right)=[/mm]
>  
> [mm]3\pi-\frac{1}{2}\cdot\frac{3}{2}\left(\int_0^{2\pi} 2\cos(2t)\Big)\:\mathrm{d}t\right)=3\pi-\frac{3}{4}\left[\sin(2t)\right]^{2\pi}_0=3\pi[/mm]
>
> Mein zweiter Versuch (Substitution):
>
> [mm]3\int_0^{2\pi} \cos(t)\sin(t)\:\mathrm{d}t=3\int^{\sin(2\pi}_{sin(0)} u\:\mathrm{d}u=3\left[\frac{u^2}{2}\right]^{\sin(2\pi)}_{\sin(0)}=3\left[\frac{\sin^2(t)}{2}\right]^{2\pi}_0=0[/mm]
>


Du integrierst hier über Nullstellen des Integranden hinweg.

Ausserdem lautet der Integrand [mm]\vmat{\sin\left(t\right)*\cos\left(t\right)}[/mm].


> So, jetzt ist ja schon mal offensichtlicherweise min. einer
> der beiden Versuche falsch, aber ich bin gerade zu doof
> den/die Fehler zu finden. Könntet ihr mir dabei vielleicht
> helfen? Habe ich vielleicht auch schon ganz zu Anfang
> Beträge vergessen, oder so, also bei [mm]\lVert\cdot\rVert_2[/mm]?
>
> WolframAlpha spuckt als Ergebnis übrigens 6 aus.
> ([]WolframAlpha)


Gruss
MathePower

Bezug
                
Bezug
Weglänge: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 23:25 Sa 19.05.2012
Autor: Lustique


> Du integrierst hier über Nullstellen des Integranden
> hinweg.

Also einfach das Integral an den Nullstellen aufteilen?

> Ausserdem lautet der Integrand
> [mm]\vmat{\sin\left(t\right)*\cos\left(t\right)}[/mm].

Also fängt man Folgendermaßen an? [mm] $L(\gamma_2)=\int_0^{2\pi} \lVert \dot{\gamma_2}(t)\rVert_2 \mathrm{d}t=\int_0^{2\pi} \sqrt{\left\lvert\Big(-3 \sin(t)\cos^2(t)\Big) \right\rvert ^2+\left\lvert\Big(3\cos(t)\sin^2(t)\Big)\right\rvert^2}\:\mathrm{d}t$ [/mm]

Aber eigentlich ist das ja auch klar. Es ist ja [mm] $\lVert x\rVert_2=\sqrt{\sum_{i=1}^n \lvert x\rvert_i^2}$ [/mm] für [mm] $x\in\mathbb{R}^n$. [/mm] Da habe ich dann einfach nur die Betragstriche ganz am Anfang unterschlagen, oder?

Ist/Wäre der Rest der Rechnung denn richtig?

> Gruss
>  MathePower

Danke! Da war ich wohl ziemlich betriebsblind. :D

Bezug
                        
Bezug
Weglänge: Antwort
Status: (Antwort) fertig Status 
Datum: 23:34 Sa 19.05.2012
Autor: MathePower

Hallo Lustique,

> > Du integrierst hier über Nullstellen des Integranden
> > hinweg.
>  
> Also einfach das Integral an den Nullstellen aufteilen?
>  


Ja.


> > Ausserdem lautet der Integrand
> > [mm]\vmat{\sin\left(t\right)*\cos\left(t\right)}[/mm].
>  
> Also fängt man Folgendermaßen an?
> [mm]L(\gamma_2)=\int_0^{2\pi} \lVert \dot{\gamma_2}(t)\rVert_2 \mathrm{d}t=\int_0^{2\pi} \sqrt{\left\lvert\Big(-3 \sin(t)\cos^2(t)\Big) \right\rvert ^2+\left\lvert\Big(3\cos(t)\sin^2(t)\Big)\right\rvert^2}\:\mathrm{d}t[/mm]
>  
>  
> Aber eigentlich ist das ja auch klar. Es ist ja [mm]\lVert x\rVert_2=\sqrt{\sum_{i=1}^n \lvert x\rvert_i^2}[/mm]
> für [mm]x\in\mathbb{R}^n[/mm]. Da habe ich dann einfach nur die
> Betragstriche ganz am Anfang unterschlagen, oder?

>


Ja.

  

> Ist/Wäre der Rest der Rechnung denn richtig?
>  


Bis auf das Ergebnis.


> > Gruss
>  >  MathePower
>
> Danke! Da war ich wohl ziemlich betriebsblind. :D


Gruss
MathePower

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de