www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Partielle Differentialgleichungen" - Wellengleichung
Wellengleichung < partielle < Differentialgl. < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Partielle Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Wellengleichung: Tipp, Hilfe
Status: (Frage) beantwortet Status 
Datum: 14:12 Sa 30.01.2010
Autor: Kaleidoskop

Aufgabe
Zeigen Sie, dass die Funktion [mm] \psi [/mm] = f(x + vt) + g(x - vt) eine Lösung der Wellengleichung [mm] v^2 \psi_{xx} [/mm] - [mm] \psi_{yy} [/mm] = 0 ist

Ich wollte wissen, mit welchem Verfahren diese Aufgabe zu lösen ist. Durch simples einsetzen oder vielleicht mit Produktansatz?

        
Bezug
Wellengleichung: Antwort
Status: (Antwort) fertig Status 
Datum: 16:13 Sa 30.01.2010
Autor: MathePower

Hallo Kaleidoskop,

> Zeigen Sie, dass die Funktion [mm]\psi[/mm] = f(x + vt) + g(x - vt)
> eine Lösung der Wellengleichung [mm]v^2 \psi_{xx}[/mm] - [mm]\psi_{yy}[/mm]
> = 0 ist
>  Ich wollte wissen, mit welchem Verfahren diese Aufgabe zu
> lösen ist. Durch simples einsetzen oder vielleicht mit
> Produktansatz?


Die Lösung ist doch schon gegeben.

Differenziere die zweimal nach x und t und
setze dies in die DGL ein.


Gruss
MathePower

Bezug
                
Bezug
Wellengleichung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:29 So 31.01.2010
Autor: Kaleidoskop

also muss ich die totalen differentiale bilden?

Bezug
                        
Bezug
Wellengleichung: Partiell
Status: (Antwort) fertig Status 
Datum: 12:37 So 31.01.2010
Autor: Infinit

Nein, die partiellen Ableitungen langen.
Viele Grüße,
Infinit

Bezug
                                
Bezug
Wellengleichung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:26 So 31.01.2010
Autor: Kaleidoskop

also wenn ich das für die patielle ableitung umforme, komm ich auf folgenden schritt:

[mm] v^2*\partial^2\psi/\partial x^2 [/mm]  -  [mm] \partial^2\psi/\partial t^2 [/mm] = 0

aber wenn ich partiell ableiten möchte, muss ich doch [mm] \psi [/mm] definieren, um eine lösung zu erhalten oder nicht?
zum beispiel [mm] \psi(x,t)= sin(kx-\omega [/mm] t)

Bezug
                                        
Bezug
Wellengleichung: Funktion gegeben?
Status: (Antwort) fertig Status 
Datum: 13:35 So 31.01.2010
Autor: Infinit

Ja, ich war davon ausgegangen, dass irgendwo die Funktion definiert ist. By the way: Ist der zweite Summand die zweite Ableitung nach y? Es taucht hier nämlich immer wieder t auf, was mich jetzt etwas verwirrt.
VG,
Infinit

Bezug
                                                
Bezug
Wellengleichung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:06 So 31.01.2010
Autor: Kaleidoskop

Ja, das war ein Fehler meinerseits...die Funtion sollte eigentlich heissen:

[mm] v^2*\psi_{xx} [/mm] - [mm] \psi_{tt} [/mm] = 0


aber in der Aufagebnstellung war nichts definiert ( keine Funktion etc.)...also alles, was ich in der Aufgabenstellung geschrieben habe, war auch alles was drin stand. Mehr war da nicht ^^

Bezug
                                                        
Bezug
Wellengleichung: Antwort
Status: (Antwort) fertig Status 
Datum: 14:21 So 31.01.2010
Autor: leduart

Hallo
wenn du ne beliebige fkt f(x+v*t) hast, setz u=x+v*t
[mm] f_xx=f_{uu} f_{tt}=f_{uu}*v^2 [/mm]
jetzt einsetzen, entsprechend mit g
Gruss leduart

Bezug
                                                                
Bezug
Wellengleichung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:37 So 31.01.2010
Autor: Kaleidoskop

Hey leduart

Deine Vorgehensweise verwirrt mich doch etwas. wieso ist [mm] f_{xx}=f_{uu}f_{tt}=f_{uu}v^2 [/mm] ?
hast du partiell diferenziert, um darauf zu kommen?

Bezug
                                                                        
Bezug
Wellengleichung: Antwort
Status: (Antwort) fertig Status 
Datum: 16:01 So 31.01.2010
Autor: MathePower

Hallo Kaleidoskop,

> Hey leduart
>  
> Deine Vorgehensweise verwirrt mich doch etwas. wieso ist
> [mm]f_{xx}=f_{uu}f_{tt}=f_{uu}v^2[/mm] ?
>  hast du partiell diferenziert, um darauf zu kommen?


Ja, da hat mein Vorredner partiell differenziert.

Dann muss das aber so lauten:

[mm]f_{\blue{tt}}=f_{uu}\left( \ \blue{u}_{t} \ \right)^{\blue{2}}=f_{uu}v^2[/mm]


Gruss
MathePower

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Partielle Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de