www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Reelle Analysis mehrerer Veränderlichen" - Wellengleichung
Wellengleichung < mehrere Veränderl. < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Wellengleichung: Korrektur
Status: (Frage) beantwortet Status 
Datum: 01:31 Mo 28.05.2012
Autor: Lustique

Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)
Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)

Aufgabe
Zeigen Sie, dass für jedes $f\in C^2(\mathbb{R})$ und $v\in \mathbb{R}^n$ mit $\lVert v\rVert_2=1$ durch

$\psi\colon \mathbb{R}^n\times \mathbb{R}\to\mathbb{R}, \qquad \psi(x,t)=f\left(\sum_{i=1}^n v_i x_i-t\right)$

eine Lösung der Wellengleichung $\Delta_x \psi-\partial_t^2 \psi=0$ ist.



Hallo zusammen,

dieses Mal könnte ich jemanden gebrauchen, der mal meinen Rechenweg kontrollieren würde. Ich habe zwar schon was, und ich komme auch da an, wo ich hin will, aber irgendwie ging das so schnell und leicht, dass mich das doch etwas stutzig macht. :-)

Also, im Folgenden mein Rechenweg:

Es gilt $f\in C^2(\mathbb{R})$, also ist, wenn mich die Notation nicht täuscht, $f$ zweimal (total) stetig differenzierbar, was auch heißt, dass $f$ zweimal partiell differenzierbar ist.

Nun habe ich mir mal gedacht, ich gucke mir mal zuerst das Argument von $f$ in $\psi$ an, weil ich den ganzen Spaß ja schließlich auch zweimal partiell ableiten muss:

$\sum_{i=1}^n v_i x_i-t=\left(v_1 x_1+v_2 x_2+\dotsb+v_n x_n\right) -t$ Hier war ich mir nun schon zum ersten Mal nicht sicher, da ich nicht genau wusste, ob das $t$ noch unter die Summe gehört (dann wäre es ja $-nt$), oder ob es so wie hier richtig ist. (Ich habe zuerst die Version mit $-nt$ genommen, aber das schien am Ende nicht aufzugehen, deswegen habe ich mich dann dagegen entschieden. :D)

Dann weiter: $\displaystyle\underset{1\leqslant j\leqslant n}{\partial_{x_j}}\left(\sum_{i=1}^n v_i x_i-t \right) = v_j$ und $\partial_t\left(\sum_{i=1}^n v_i x_i-t \right) = -1$.

Der folgende Schritt macht mir am meisten Sorgen:

$\partial_{x_j}}\left(f\left(\sum_{i=1}^n v_i x_i-t \right)\right)=v_j\cdot f'\left(\sum_{i=1}^n v_i x_i-t \right)$

Ich habe ja hier praktisch die Kettenregel benutzt, und das erst mal ohne (viel) nachzudenken, aber im Grunde genommen leite ich ja hier "eindimensional" ab, sozusagen, bin also im $\mathbb{R}^1$, und dann müsste das doch eigentlich so funktionieren, oder? Falls ja, müsste ich das dann noch weiter begründen, oder würde das reichen?

Dann das Ganze noch ein zweites Mal:
$\partial^2_{x_j}}\left(f\left(\sum_{i=1}^n v_i x_i-t \right)\right)=\partial_{x_j}\left(v_j\cdot f'\left(\sum_{i=1}^n v_i x_i-t \right)\right)=v_j^2\cdot f''\left(\sum_{i=1}^n v_i x_i-t \right)$.

Es folgt also (wenn bis dahin alles richtig sein sollte):

$\Delta_x\psi=\sum_{j=1}^n\left( v_j^2\cdot f''\left(\sum_{i=1}^n v_i x_i-t \right)\right)=\lVert v\rVert_2^2 \cdot f''\left(\sum_{i=1}^n v_i x_i-t \right)$.

Mit $\partial_t f\left(\sum_{i=1}^n v_i x_i-t \right) = -f'\left(\sum_{i=1}^n v_i x_i-t \right)$ und $\partial^2_t f\left(\sum_{i=1}^n v_i x_i-t \right) = f''\left(\sum_{i=1}^n v_i x_i-t \right)$, würde dann folgen:

$\Delta_x\psi-\partial^2_t\psi=\lVert v\rVert_2^2 \cdot f''\left(\sum_{i=1}^n v_i x_i-t \right)- f''\left(\sum_{i=1}^n v_i x_i-t \right)=1\cdot f''\left(\sum_{i=1}^n v_i x_i-t \right)- f''\left(\sum_{i=1}^n v_i x_i-t \right) =0$,

und ich wäre fertig, aber irgendwie traue ich dem Ganzen nicht...

Könntet ihr das Ganze vielleicht mal kontrollieren?



        
Bezug
Wellengleichung: Antwort
Status: (Antwort) fertig Status 
Datum: 12:14 Mo 28.05.2012
Autor: kamaleonti

Hallo Lustique,

> Zeigen Sie, dass für jedes [mm]f\in C^2(\mathbb{R})[/mm] und [mm]v\in \mathbb{R}^n[/mm]
> mit [mm]\lVert v\rVert_2=1[/mm] durch
>
> [mm]\psi\colon \mathbb{R}^n\times \mathbb{R}\to\mathbb{R}, \qquad \psi(x,t)=f\left(\sum_{i=1}^n v_i x_i-t\right)[/mm]
>
> eine Lösung der Wellengleichung [mm]\Delta_x \psi-\partial_t^2 \psi=0[/mm]
> ist.
>  
>
> Hallo zusammen,
>
> dieses Mal könnte ich jemanden gebrauchen, der mal meinen
> Rechenweg kontrollieren würde. Ich habe zwar schon was,
> und ich komme auch da an, wo ich hin will, aber irgendwie
> ging das so schnell und leicht, dass mich das doch etwas
> stutzig macht. :-)
>
> Also, im Folgenden mein Rechenweg:
>
> Es gilt [mm]f\in C^2(\mathbb{R})[/mm], also ist, wenn mich die
> Notation nicht täuscht, [mm]f[/mm] zweimal (total) stetig
> differenzierbar, was auch heißt, dass [mm]f[/mm] zweimal partiell
> differenzierbar ist.
>
> Nun habe ich mir mal gedacht, ich gucke mir mal zuerst das
> Argument von [mm]f[/mm] in [mm]\psi[/mm] an, weil ich den ganzen Spaß ja
> schließlich auch zweimal partiell ableiten muss:
>
> [mm]\sum_{i=1}^n v_i x_i-t=\left(v_1 x_1+v_2 x_2+\dotsb+v_n x_n\right) -t[/mm]
> Hier war ich mir nun schon zum ersten Mal nicht sicher, da
> ich nicht genau wusste, ob das [mm]t[/mm] noch unter die Summe
> gehört (dann wäre es ja [mm]-nt[/mm]), oder ob es so wie hier
> richtig ist. (Ich habe zuerst die Version mit [mm]-nt[/mm] genommen,
> aber das schien am Ende nicht aufzugehen, deswegen habe ich
> mich dann dagegen entschieden. :D)
>
> Dann weiter: [mm]\displaystyle\underset{1\leqslant j\leqslant n}{\partial_{x_j}}\left(\sum_{i=1}^n v_i x_i-t \right) = v_j[/mm]
> und [mm]\partial_t\left(\sum_{i=1}^n v_i x_i-t \right) = -1[/mm].

[ok]

>
> Der folgende Schritt macht mir am meisten Sorgen:
>
> [mm]\partial_{x_j}}\left(f\left(\sum_{i=1}^n v_i x_i-t \right)\right)=v_j\cdot f'\left(\sum_{i=1}^n v_i x_i-t \right)[/mm] #

Stimmt so.

>
> Ich habe ja hier praktisch die Kettenregel benutzt, und das
> erst mal ohne (viel) nachzudenken, aber im Grunde genommen
> leite ich ja hier "eindimensional" ab, sozusagen, bin also
> im [mm]\mathbb{R}^1[/mm], und dann müsste das doch eigentlich so
> funktionieren, oder? Falls ja, müsste ich das dann noch
> weiter begründen, oder würde das reichen?
>  
> Dann das Ganze noch ein zweites Mal:
> [mm]\partial^2_{x_j}}\left(f\left(\sum_{i=1}^n v_i x_i-t \right)\right)=\partial_{x_j}\left(v_j\cdot f'\left(\sum_{i=1}^n v_i x_i-t \right)\right)=v_j^2\cdot f''\left(\sum_{i=1}^n v_i x_i-t \right)[/mm].
>
> Es folgt also (wenn bis dahin alles richtig sein sollte):
>
> [mm]\Delta_x\psi=\sum_{j=1}^n\left( v_j^2\cdot f''\left(\sum_{i=1}^n v_i x_i-t \right)\right)=\lVert v\rVert_2^2 \cdot f''\left(\sum_{i=1}^n v_i x_i-t \right)[/mm].
>
> Mit [mm]\partial_t f\left(\sum_{i=1}^n v_i x_i-t \right) = -f'\left(\sum_{i=1}^n v_i x_i-t \right)[/mm]
> und [mm]\partial^2_t f\left(\sum_{i=1}^n v_i x_i-t \right) = f''\left(\sum_{i=1}^n v_i x_i-t \right)[/mm],
> würde dann folgen:
>
> [mm]\Delta_x\psi-\partial^2_t\psi=\lVert v\rVert_2^2 \cdot f''\left(\sum_{i=1}^n v_i x_i-t \right)- f''\left(\sum_{i=1}^n v_i x_i-t \right)=1\cdot f''\left(\sum_{i=1}^n v_i x_i-t \right)- f''\left(\sum_{i=1}^n v_i x_i-t \right) =0[/mm],
>
> und ich wäre fertig, aber irgendwie traue ich dem Ganzen
> nicht...
>
> Könntet ihr das Ganze vielleicht mal kontrollieren?

Alles top!

LG

Bezug
                
Bezug
Wellengleichung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 22:24 Di 29.05.2012
Autor: Lustique

Danke für deine Kontrolle, aber das hätte ich so nicht erwartet. [happy]

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de