www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Partielle Differentialgleichungen" - Wellengleichung Fouriermethode
Wellengleichung Fouriermethode < partielle < Differentialgl. < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Partielle Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Wellengleichung Fouriermethode: Korrektur / Tipp
Status: (Frage) beantwortet Status 
Datum: 15:53 Fr 22.04.2016
Autor: riju

Aufgabe
Lösen Sie mittels der Fouriermethode das folgende Anfangs-Randwertproblem für die eindimensionale Wellengleichung analytisch:

[mm] u_{tt}=u_{xx} [/mm] in [mm] \IR \times (0,\pi) [/mm] unter den Randbedingungen [mm]u(t,0)=0=u(t,\pi) [/mm] zu den Anfangsbedingungen [mm]u(0,x)=sin(2x), u_{t}(0,x)=1 [/mm].

Ich habe bis jetzt folgenden Lösungsansatz:


Ansatz: [mm] u(t,x) = T(t)X(x) [/mm]
[mm] \Rightarrow T''(t) X(x) = X''(x) T(t) [/mm]
[mm] \bruch{T''(t)}{T(t)}=\bruch{X''(x)}{X(x)} = \mu \qquad konstant [/mm]

1) [mm]X(x)[/mm] berechnen
[mm] \bruch{X''(x)}{X(x)} = \mu \Rightarrow X''(x)-\mu X(x)=0 [/mm]

Eigenwertproblem mit [mm] \lambda^{2}-\mu=0 [/mm]
[mm]\lambda_{1,2}=\pm \wurzel{\mu} [/mm]
[mm] \Rightarrow X(x)=C_{1} e^{\wurzel{\mu}x}+C_{2}e^{-\wurzel{\mu}x} [/mm]

bei [mm] \mu \not= 0 [/mm]:
[mm] X(0)=C_{1}+C_{2} =0 [/mm]
[mm] X(\pi)=C_{1} e^{\wurzel{\mu}\pi}+C_{2}e^{-\wurzel{\mu}\pi} [/mm]
hat nichttriviale Lösung nur bei [mm] det\pmat{ 1 & 1 \\ e^{\wurzel{\mu}\pi} & e^{-\wurzel{\mu}pi }}=0 [/mm].

[mm] \Rightarrow det()=e^{\wurzel{\mu}\pi}-e^{\wurzel{\mu}\pi}=0 [/mm]
[mm] \Rightarrow e^{-\wurzel{\mu}\pi }=e^{\wurzel{\mu}\pi} [/mm].

Es können keine [mm] \mu > 0 [/mm] Eigenwerte sein.
Bei [mm] \mu<0, \mu=- \lambda^2 [/mm] ist [mm]e^{-\wurzel{\mu}\pi}=e^{-i \lambda \pi}=e{\wurzel{\mu}\pi}=e^{i \lambda \pi}[/mm].
[mm] \gdw e^{2 i \lambda \pi =1[/mm] nur bei [mm] \lambda \in \IZ[/mm],
d.h. [mm] \mu=-n^{2}, n \in \IN [/mm] ist Eigenwert.

[mm] \Rightarrow X_{n}(x)=C_{n} cos(nx) [/mm] ist Eigenfunktion zu [mm] \mu=-n^{2} [/mm].

2) [mm] T(t) [/mm] berechnen
[mm] \bruch{T''(t)}{T(t)} = -n^{2} [/mm]
[mm] \Rightarrow T_{n}(t) = A_{n} cos(nt)+B_{n} sin(nt) [/mm] für [mm] n \in \IN [/mm]

3) [mm] u_n(t,x)=(A_{n} cos(nt)+B_{n} sin(nt)) cos (nx) [/mm] für [mm] n \in \IN [/mm].
Für [mm] n=0 [/mm]: [mm]u_0(t,x)=A_{0}+B_{0}t [/mm]

4) Bestimmung der Konstanten [mm] A_{n}, B_{n} [/mm] aus Anfangswerten :
[mm] u(0,x)=sin(2x) [/mm]
[mm] u_t(0,x)=1 [/mm]

[mm] \Rightarrow u(t,x) = \summe_{n=0}^{\infty} u_{n}(t,x) = A_{0}+B_{0}t +\summe_{n=1}^{\infty}(A_{n} cos(nt)+B_{n} sin(nt)) cos (nx) [/mm]

[mm] u(0,x)=A_{0}+\summe_{n=1}^{\infty} A_{n} cos(nx) =sin(2x) [/mm]

Ist das bis hierhin richtig?
Leider weiß ich jetzt nicht weiter?
Wie bekomme ich die Konstanten raus?

Vielen Dank im Voraus

Liebe Grüße
riju

        
Bezug
Wellengleichung Fouriermethode: Antwort
Status: (Antwort) fertig Status 
Datum: 22:30 Sa 23.04.2016
Autor: leduart

Hallo
warum hast du bei X(x) nur cos(nx) und nicht sin(nx) stehen, bei dem entsprechenden T(t) aber beide?
so wie es da steht kann ja u(0,x) nicht sin(2x) sein.
Gruß leduart

Bezug
                
Bezug
Wellengleichung Fouriermethode: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:06 So 24.04.2016
Autor: riju


> Hallo
>   warum hast du bei X(x) nur cos(nx) und nicht sin(nx)
> stehen, bei dem entsprechenden T(t) aber beide?
>  so wie es da steht kann ja u(0,x) nicht sin(2x) sein.
>  Gruß leduart

Hallo,

das kommt daher, das wir in der Vorlesung so ein ähnliches Beispiel hatten und ich nicht weiß, wie das zustande kommt.
Vielleicht kann mir das ja jemand erklären, was ich genau falsch gemacht.

Liebe Grüße
riju

Bezug
                        
Bezug
Wellengleichung Fouriermethode: Antwort
Status: (Antwort) fertig Status 
Datum: 15:30 So 24.04.2016
Autor: leduart

Hallo
wenn ihr nur den cos angesetzt habt lag das sicher an den Anfangsbed.
aber hier brauchst du ja erstmal das gesamte Fundamentalsystem von [mm] X''=.n^2*X [/mm] und das ist sin(n*x) und cos(n*x) dh. h. allgemein  X(x)=Asin(n*x))+Bcos(n*x)
aus den Randbed folgt n=2 und B=0
Gruß leduart

Bezug
                                
Bezug
Wellengleichung Fouriermethode: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:50 So 24.04.2016
Autor: riju


> Hallo
>   wenn ihr nur den cos angesetzt habt lag das sicher an den
> Anfangsbed.
>   aber hier brauchst du ja erstmal das gesamte
> Fundamentalsystem von [mm]X''=.n^2*X[/mm] und das ist sin(n*x) und
> cos(n*x) dh. h. allgemein  X(x)=Asin(n*x))+Bcos(n*x)
>  aus den Randbed folgt n=2 und B=0
>  Gruß leduart  

Hallo,
wie kommst du auf [mm] n=2 [/mm]?
Also setze ich die Randbedingungen in [mm] X(x) [/mm] ein?
Somit hätte ich
[mm]X(0)=A*sin(n*0)+ B*cos (n*0) = B [/mm] und laut Randbedingung muss ja [mm] X(0)=0 [/mm] sein, also ist [mm] B=0 [/mm].
Dann habe ich ja auch noch
[mm]X(\pi)=A*sin(n*\pi)+ B*cos(n*\pi) [/mm]. Da [mm] B=0 [/mm] habe ich noch [mm] X(\pi)=A*sin(n*\pi) [/mm] und das muss laut Randbedingung [mm] X(\pi)=0 [/mm] sein. Oder?
Und weil eine Anfangsbedingung [mm] u(0,x)=sin(2x) [/mm] ist, ist [mm] n=2 [/mm]?

Liebe Grüße
riju

Bezug
                                        
Bezug
Wellengleichung Fouriermethode: Antwort
Status: (Antwort) fertig Status 
Datum: 14:38 Mo 25.04.2016
Autor: leduart

Hallo
ja
Gruß leduart

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Partielle Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de